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Abstract

This thesis investigates the problem of achieving static hovering for generically
tilted multirotor platforms (GTMs), with particular attention to partially coupled
underactuated vehicles. Static hovering—the ability to maintain a fixed position and
orientation—is essential for safe aerial operations, especially under reduced control
authority, such as in the event of rotor failures. Starting from an existing dynamic
model for GTMs defined on the configuration space SE(3)—which accommodates
arbitrary propeller positions and tilt angles—this work analyzes the stability of
the closed-loop error dynamics resulting from a geometric control law originally
proposed by Michieletto et al. The adopted control law enables static hovering for
all platforms described by the considered model that are statically hoverable, with a
focus on the challenging case of partially coupled underactuated vehicles. The main
contribution of this work is a rigorous Lyapunov-based proof of local exponential
stability for the closed-loop error dynamics under the geometric controller. While
previous work provided experimental validation, a formal stability proof was missing.
The analysis involves tools from nonlinear control theory and differential geometry,
offering a unified, coordinate-free framework. Theoretical findings are supported by
high-fidelity simulations, which confirm the predicted stability and robustness.
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Chapter 1

Introduction

Since the dawn of human civilization, man has always observed nature in order to
understand its mechanisms and shape it to face the challenges that arose during
his evolutionary journey. The concept behind this thinking is known as biomimicry,
or the observation of nature to understand its principles and find solutions to the
concrete problems that stood between man and the future. Engineering pioneers such
as Leonardo da Vinci began to meticulously observe the flight of birds, the morphology
of their wings, and their light yet resistant structure in order to understand the
principles that guided their efficiency and agility. These studies provided the
fundamental knowledge for human flight. Today, this legacy is reflected in unmanned
aerial vehicles, commonly known as drones.

1.1 Motivation and Applications
In recent years, UAVs have become increasingly popular, probably due to their
vertical take-off and landing capabilities, but above all because they do not require
complex mechanisms such as swash plates or teeter hinges (typical of traditional
helicopters, for example). For these reasons, they have found application in a wide
range of sectors, offering practical solutions to numerous problems. For example, in
agriculture, they allow crops to be monitored and harvests to be estimated [6, 40].
In mapping and environmental monitoring, UAVs provide valuable data for terrain
analysis and infrastructure inspection, especially in hard-to-reach areas [31, 33, 2,
13].

UAVs are also used in surveillance and security, enabling efficient area coverage
and real-time monitoring [36, 7]. In logistics, they help meet last-mile delivery
and urgent transport needs, particularly where traditional methods encounter is-
sues [28, 12]. Search and rescue operations benefit from their rapid deployment and
coordination capabilities, which improve response times [10, 43, 24].

Recent developments in aerial manipulation have expanded the range of tasks
that UAVs can perform. For example, soft grippers have been developed that allow
drones to grasp objects during flight [41]. Fully actuated UAVs are now capable
of applying controlled forces for inspection tasks [2] and can interact with surfaces
using tactile sensors [13]. Furthermore, cooperative grasping and transport by
multiple UAVs has evolved from early attempts to more systematic approaches with
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established design and control methods [25, 38].
Overall, these examples highlight just a few of the many ways UAVs are being

used to address practical problems across different domains, reflecting their growing
presence and utility in everyday life [35].

1.2 Full-Actuation and Rotor Failures
While the modeling, design, and control of quadrotors are now well understood,
recent research has increasingly focused on redundant multirotor platforms—those
equipped with five, six, seven, or more propellers. These platforms can achieve
fully actuated or omnidirectional flight, providing additional degrees of freedom that
allow for independent control of position and orientation. This capability enables
more precise force and torque generation, which is particularly useful for advanced
aerial manipulation and interaction tasks. Recent developments include pentacopters
capable of adhering to vertical surfaces, as well as heptarotors and hexacopters with
tiltable rotors that can hover in arbitrary orientations. These examples demonstrate
how redundancy in the number of propellers leads to new actuation capabilities and
expands the range of possible applications [34, 4, 32, 1, 14, 39, 21, 16, 19].

When dealing with such UAVs, analyzing their robustness to rotor failures
becomes interesting and relevant. Of particular interest is understanding how
the actuation capabilities of the drone degrade when a propeller fails. In these
scenarios, the platform may lose the ability to independently control its position and
orientation, resulting in partial coupling and parasitic forces that hinder full control
authority. The ability to design a control law that allows the platform to reach a
forced equilibrium point—achieving static hovering with zero linear and angular
velocity—after a rotor failure is highly valuable. This property is fundamental to
prevent abrupt collisions or more severe consequences following a failure. A deeper
theoretical understanding of the actuation properties of multirotors is needed to
address these challenges.

Several works have addressed these challenges. Du et al. [5] performed a con-
trollability analysis based on the linearized multirotor dynamics around hovering,
showing that controllability after a rotor failure strongly depends on the propeller
spinning directions. Giribet et al. [11] proposed a design method for star-shaped
hexarotors that preserves the ability to reject disturbance moments in all directions,
even after any single motor failure. In [27], Michieletto et al. demonstrated that
by applying a modest, common tilt to all the spinning axes of the propellers, a
conventional star-shaped hexarotor can be made tolerant to a single rotor failure,
thus enabling the platform to achieve static hovering even after a fault. Moreover,
they conducted an in-depth analysis of the actuation capabilities of UAVs, offering
definitions that allow for the classification of different drones according to their
actuation properties. In particular, they provided conditions under which a platform
can be considered partially coupled.
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1.3 Geometric Control for Static Hovering
As aforementioned, the choice of control strategy is crucial to ensure that the platform
can achieve static hovering after a rotor failure. Traditional approaches—such as
proportional-derivative controllers or linear quadratic regulators, typically formulated
using Euler angles or quaternions (see, e.g., [3, 8])—are limited by their underlying
representations. Controllers based on Euler angles are susceptible to gimbal-lock
singularities, while quaternion-based methods face the double-cover issue, where a
single orientation corresponds to two opposite quaternions, potentially introducing
discontinuities in the control law.

A solution is offered by geometric controllers that act directly on the Special
Orthogonal Group SO(3) and, more generally, on the Special Euclidean Group
SE(3). In this framework the attitude is represented by global entities on the
manifold rather than local coordinates, rendering the control law coordinate-free:
no singularities, no arbitrary representation choices, and no sign flips. The outcome
is smoother tracking and proofs of local exponential stability that remain valid even
under sizeable disturbances or parameter uncertainties [22].

In [26], Michieletto et al. provide a formal definition of static hovering for
multirotor platforms, characterizing it as the ability to maintain zero linear and
angular velocity. They also establish general conditions under which a generically
tilted multirotor1 can achieve static hovering. Furthermore, the authors propose a
geometric control law that enables the platform to reach and maintain this equilibrium
state. This control law has been extensively validated through simulations and real-
world experiments at the Laboratory for Analysis and Architecture of Systems2 on
a tilted hexarotor platform shown in Figure 1.1.

Figure 1.1. A tilted hexarotor platform used for experimental validation of the control law
proposed in [26].

The control law applies to a broad class of generically tilted multirotor platforms,
comprising at least four propellers arranged beyond the standard regular polygon
configuration. These platforms are fully actuated in orientation and possess at least
one direction in which thrust can be regulated independently of the applied moment,
enabling static hovering.

1A generically tilted multirotor is a platform in which the spinning axes of the propellers are
intentionally tilted with respect to the body-fixed reference frame, without requiring additional
external hardware.

2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France. A video of the experimental
results is available at: https://youtu.be/Oa65WMc1Ct8?si=oCjqIWRUyThvaqcQ.

https://youtu.be/Oa65WMc1Ct8?si=oCjqIWRUyThvaqcQ
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It is worth noting that this control law is not limited to multirotor UAVs.
Rather, it can be applied to any floating rigid body that shares the same actuation
capabilities, regardless of the surrounding medium. This includes, for example,
underwater vehicles such as submarines, as well as spacecraft and satellites operating
in space. The underlying principles of the control strategy remain valid as long
as the platform possesses the necessary actuation properties, making the approach
broadly applicable across different domains of robotics and autonomous systems.

Importantly, the control law is designed to achieve static hovering even in the
presence of partial force-moment coupling, whether this arises after a rotor failure
or is inherent to the platform’s configuration. This makes the approach applicable
to both fully actuated and underactuated, partially-coupled vehicles. The results
presented in this thesis provide a rigorous theoretical framework for establishing
the local exponential stability of the closed-loop error dynamics induced by the
geometric control law. Specifically, a general proof pattern is developed that can
be systematically applied to demonstrate local exponential stability of the static
hovering equilibrium, even under partial coupling due to rotor failures. This analysis
leverages advanced tools from nonlinear control theory and differential geometry,
enabling a unified and coordinate-free treatment of the error dynamics on the
underlying manifold.

The structure of the thesis is as follows. Chapter 2 introduces the mathematical
model for a generically tilted multirotor, building on the foundational work of [27,
22]. This model captures both the general arrangement of the propellers and the
orientation of each spinning axis. Chapter 3 synthesizes the analysis from [27],
focusing on the fundamental properties of the model, including actuation capabilities
and the conditions under which a platform is considered partially coupled. In
Chapter 4, thanks to the seminal works of [27, 26], we define static hovering and
establish the criteria that enable a generically tilted multirotor to achieve it. In
Chapter 5 is presented the geometric control law provided by Michieletto et al.
in [26], that allows the platform to realize static hovering. The main original
contribution of this thesis is detailed in Chapter 6, where we rigorously prove
the local exponential stability of the closed-loop error dynamics induced by the
proposed control law. Although the control law has been extensively validated,
Chapter 7 provides illustrative numerical simulations, not to validate the control
law itself, but to demonstrate the stability results obtained in the thesis through
three representative maneuvers for a partially coupled platform. Finally, Chapter 8
summarizes the main contributions and outlines directions for future research.

At the end of the thesis, several appendices are provided. These may be useful
to the reader as a quick reference for some theoretical concepts on stability theory,
as well as a summary of several calculations whose results are used throughout the
proofs.
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Part II

Modeling and Fundamental
Properties
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Chapter 2

Mathematical Modeling of a
Generically Tilted Multirotor

In this chapter, we will attempt to derive a mathematical model for generically tilted
multirotors (GTM). By synergistically integrating kinematic and dynamic equations,
the model should provide a complete description of the platform’s behaviour. The
kinematic equations describe the motion in terms of linear and angular velocities,
while the dynamic equations capture the forces and moments acting on the system.

The establishment of a rigorous mathematical model is of paramount importance,
as it constitutes the essential groundwork upon which advanced control laws are
conceived. Through such a model, one is endowed with the analytical means to
systematically design control strategies that induce the desired behaviour in the
platform, thereby enabling precise and reliable operation even in the presence of
complex and uncertain environments.

The mathematical model presented in this chapter is entirely based on the
seminal works of [27] and [22]. Here, a synthesis of these two references is provided,
combining their methodologies and summarizing key concepts to offer a unified
exposition. For an accessible introduction to multirotor platform modelling, see [42].

2.1 Generically Tilted Multirotors
The following definition, adapted from Definition 1 in [15], helps clarify what is
meant by a generically tilted multirotor (GTM).

Definition 2.1 (Generically Tilted Multirotors, [15]). A GTM (Generically Tilted
Multirotor) is a rigid body equipped with n lightweight propellers, each capable of
producing the aerodynamic forces and moments required to control the vehicle’s
motion. Let

N = {1, 2, . . . , n}

denote the index set of the propellers. The system so defined is completely described
by the quantity of propellers and their arrangement (their position and tilt angle).

Before proceeding, it is important to note that the GTM model developed here
is an approximation of the real system. Specifically, we will neglect the mass, inertia,
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and secondary aerodynamic effects of the propellers, such as, e.g., flapping effects.
This assumption, widely adopted in the literature, is justified by the fact that the
mass and inertia of the propellers are negligible compared to those of the main body.

To eliminate any potential ambiguities, the following notation will be formally
adopted.

• cr ∈ R3 denotes a vector whose coordinates are expressed in frame Fc;

• rij ∈ R3 denotes the position of the origin of frame Fj with respect to the
origin of frame Fi;

• ṙij ∈ R3 denotes the velocity of the origin of frame Fj with respect to the
origin of frame Fi;

• iRj ∈ SO(3) denotes the orientation of frame Fj with respect to frame Fi;

For any vector v ∈ R3, we decompose it into its magnitude and direction as

v = ∥v∥ v̂,

where

• ∥v∥ =
√

v⊤v ∈ R is the Euclidean norm of v, and

• v̂ ∈ S2 :=
{
x ∈ R3 : ∥x∥ = 1

}
is the corresponding unit vector, defined by

v̂ := v

∥v∥
.

Hereafter, ei will denote the i-th canonical basis vector of the reference frame
expressed in its coordinates. In particular, ei denotes the i-th column of the identity
matrix I3.

2.2 Kinematics
In order to derive the GTM model, we will consider:

• The inertial world reference frame FW = {OW , (xW ,yW , zW )} with origin
OW ;

• The body-fixed reference frame FB = {OB, (xB,yB, zB)} with origin OB

located at the center of mass of the rigid body.

The body-fixed reference frame FB is a rigidly attached moving frame to the
platform, which undergoes roto-translations with respect to the fixed world reference
frame FW . The origin OB of FB is located at the center of mass (CoM) of the
platform and generally does not coincide with the origin OW of FW . The position of
OB relative to OW is described by the vector WrWB =: Wp ∈ R3, expressed in FW .
The orientation of FB w.r.t. FW is described by the rotation matrix WRB ∈ SO(3).
Thus, the full pose of the vehicle in the world frame FW is described by the pair
Wq = (Wp, WRB) ∈ SE(3).
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In addition, the twist of the platform is described by the pair (Wv, BωW
B ), where

Wv := W ṙWB ∈ R3 denotes the linear velocity of the center of mass OB of the
platform w.r.t. the velocity of the origin of FW , expressed in FW , and BωW

B ∈ R3

represents the angular velocity of FB w.r.t. FW , expressed in FB. Using the
previous ingredients, the kinematics equations of a GTM can be derived. The linear
kinematics of the platform is given by the relation

Wv = W ṗ. (2.1)

The orientation kinematics is governed by the relation

W ṘB = WRBS(BωW
B ), (2.2)

where S : R3 → so(3), defined by the condition that S(x)y = x×y for all x,y ∈ R3,
is the map that associates any vector in R3 with its corresponding skew-symmetric
matrix belonging to so(3) (see Appendix A for more details).

2.3 Actuation Units
Let FPi = {OPi , (xPi ,yPi , zPi)} denote the reference frame associated with the i-th
propeller, where OPi represents its center, with i ∈ N . The axis zPi aligns with the
spinning axis of the propeller, while the plane defined by xPi and yPi is orthogonal
to it, known as the spinning plane. The axis xPi is arbitrarily selected among those
perpendicular to zPi , and yPi is defined as yPi = zPi × xPi .

The position of OPi relative to OB is described by the vector Bpi := BrBPi
∈ R3,

expressed in FB. We derive an expression for Bpi to ensure the propellers are in a
coplanar configuration1. The position of the i-th propeller is given by

Bpi = lRZ(θi)e1, (2.3)

where l is the distance from the center of mass to the propeller, RZ(θi) is the canonical
rotation matrix about the zB axis by an angle θi := (i− 1)2π

n − 1
2(1 + (−1)i)ϕ, where

ϕ is a parameter that generalizes the arrangement of the propellers, and i ∈ N . The
parameter ϕ ∈ [0, π3 ] allows the propellers to be placed in a more general way than
at the vertices of regular polygons. Specifically, ϕ = 0 corresponds to the traditional
star-shaped configuration, while ϕ ̸= 0 allows for a more general arrangement (i.e.,
Y-shaped configuration for ϕ = π

3 ).
In general, the axis zPi is not parallel to the third body-fixed axis zB , leading to

a difference in orientation between the frames FPi and FB. This relative orientation
is captured by the rotation matrix BRPi ∈ SO(3), which maps vectors from FPi to
FB. We can decompose each BRPi into 3 consecutive rotations:

BRPi = RZ(θi)RX(αi)RY (βi), (2.4)

1Although the ability to reallocate and reorient the propellers enhances design flexibility, it also
increases the number of design parameters, making the design process more complex. To mitigate
this complexity, we impose the constraint that the propeller centers and the center of mass (CoM)
of the platform lie in the same plane.
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where RX(αi), RY (βi), and RZ(θi) are the canonical rotation matrices about the
xB, yB, and zB axes by angles αi, βi, and θi, respectively. The angles αi and βi
represent the tilt angles that uniquely define the rotation plane of the i-th propeller,
(xPi ,yPi), or equivalently, the orientation of the propeller spinning axis with respect
to the body frame. The spinning plane of the i-th propeller is obtained starting
from the plane (xB,yB), then applying a first rotation of θi about the zB axis to
align the first body-fixed axis with xPi , followed by a rotation of αi about the xPi

axis and a rotation of βi about the y′
Pi

axis, which is the intermediate axis obtained
by applying the first two rotations.

The tilt angles αi and βi are defined as

αi = (−1)i−1α, α ∈
[
−π

2 ,
π

2
]
,

βi = (−1)i−1β, β ∈
[
−π

2 ,
π

2
]
,

with i ∈ N . The parameters {αi, βi}ni=1 dictate whether the propeller axes are
parallel or differently oriented and are assumed constant during flight, except for
tiltable rotor platforms. When αi = βi = 0 for all i ∈ N , the axes BzPi align with
BzB, i.e., e3, defining a standard collinear multirotor configuration.

A graphic representation of the propeller’s position and orientation is shown in
Figure 2.1.

Figure 2.1. Representation of the position and orientation of the i-th propeller in the body
frame FB . This picture is taken from [9].

The parameters defining each propeller are summarized as follows.

• Aerodynamic parameters: The propeller’s shape and airfoil profile determine
its aerodynamic forces and moments, typically characterized by the thrust
coefficient cfi

and drag coefficient cτi . These parameters, usually provided by
the manufacturer, influence payload capacity and energy consumption and are
assumed constant during flight.

• Propeller chord: A propeller with an ascending chord generates thrust opposite
to its angular velocity, while a descending-chord propeller generates thrust
in the same direction. The drag moment is always opposed to the angular
velocity. The propeller chord influences the value of ki in the thrust and drag
moment definitions.

• Unidirectional or bidirectional thrust: Most multirotors are designed with uni-
directional thrust, where 0 ≤ wi ≤ wi ≤ wi, with wi, wi ∈ R>0. Bidirectional
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thrust allows wi ≤ wi ≤ wi, with wi < 0 and wi > 0, increasing thrust range
but typically reducing cfi

due to the need for symmetrical sections.

• Fixed or actuated spinning axis: A fixed spinning axis implies a constant
orientation of zPi during flight. In contrast, an actuated spinning axis allows
thrust vectoring by changing the orientation of zPi via servomotors. For this
discussion, only fixed spinning axes are considered.

• Position of the i-th propeller : The position Bpi relative to OB affects the total
moment applied to the platform’s center of mass. Furthermore, the position of
the propellers defines the type and structure of the platform.

This modeling approach, which parametrizes both the position and orientation of
each propeller, enables the identification of a vast number of possible configurations,
far beyond traditional arrangements such as regular polygons or parallel spinning
axes. By allowing for arbitrary allocation and orientation of the propellers—while
maintaining the constraint that all centers lie in the same plane—this framework
provides a highly general and flexible foundation for the analysis and design of
multirotor aerial vehicles. This generalization is taken from the approach proposed
in [34].

2.4 Control Forces and Moments
The i-th propeller rotates with an angular velocity wi ∈ R3 about its spinning axis.
The angular velocity can be expressed as

wi = ∥wi∥ŵi = kiwizPi , (2.5)

where wi ∈ R>0 represents the magnitude of the angular velocity (i.e., the spinning
rate) and ki ∈ {−1, 1} is the rotor’s direction coefficient, determined by the propeller’s
design. Specifically, ki = 1 corresponds to a counterclockwise (CCW) propeller,
while ki = −1 corresponds to a clockwise (CW) propeller. The unit vector ŵi, which
defines the direction of wi, is aligned with the spinning axis of the i-th propeller
and is given by

ŵi = kizPi .

Due to its rotation, the i-th propeller generates a thrust (or lift) force fi ∈ R3 at
OPi , directed along the propeller axis zPi . This force is expressed as

fi = kicfi
∥wi∥2ŵi = cfi

w2
i zPi , (2.6)

where the constant cfi
> 0 is the thrust coefficient of the i-th propeller, which

depends on its physical characteristics. Here, the lift force is proportional to the
square of the spinning rate wi. The relation is derived using (2.5), i.e. taking into
account the fact that CCW propellers produce lift in the same direction as their
angular velocity, while CW propellers produce lift in the opposite direction.
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In addition, the i-th propeller also generates a drag moment τ di ∈ R3 at OPi

whose direction is always opposite to the angular velocity of the propeller. Its
expression is

τ di = −c+
τi

∥wi∥2ŵi = −kic+
τi
w2
i zPi , (2.7)

where c+
τi
> 0 is the drag coefficient of the i-th propeller, which depends on its

physical characteristics. It is important to remind that the propeller is assumed
to be sufficiently lightweight, such that its associated moment of inertia can be
neglected when compared to the two primary aerodynamic effects described above,
as well as the platform’s moment of inertia.

Moreover, due to the presence of a thrust force fi at OPi , i.e. at rBPi
, a thrust

moment τ ti ∈ R3 is generated, whose expression is

τ ti = rBPi
× fi. (2.8)

Finally, we proceed to represent the total force and total moment that the
platform can generate, both in coordinates expressed in the body frame FB.

In coordinates, the total control force that the multirotor is able to generate is
given by

Bfc =
n∑
i=1

Bfi =
n∑
i=1

cfi

BRPie3w
2
i , (2.9)

which follows directly from (2.6). The quantity BRPie3 represents nothing more
than the third column of BRPi , the definition of which has already been given in
(2.4). It describes the third axis zPi of the propeller frame FPi expressed in the body
frame FB.

The total drag moment acting on the multirotor is given by

Bτ d =
n∑
i=1

Bτ di = −
n∑
i=1

kic
+
τi

BRPie3w
2
i , (2.10)

derived from (2.7). The total thrust moment acting on the multirotor is given by

Bτ t =
n∑
i=1

Bpi × Bfi =
n∑
i=1

cfi
S(Bpi)BRPie3w

2
i , (2.11)

whose expression follows directly from (2.8).
The total control moment generated by all propellers is given by

Bτc = Bτ d + Bτ t =
n∑
i=1

(Bτ di + Bτ ti ).

By exploiting (2.10) and (2.11), the generic term of the sum can be rewritten as

Bτ di + Bτ ti =
(
−kic+

τi
I3 + cfi

S(Bpi)
)
BRPie3w

2
i .
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Therefore, the total control moment can be expressed as

Bτc =
n∑
i=1

(
−kic+

τi
I3 + cfi

S(Bpi)
)
BRPie3w

2
i . (2.12)

Let u ∈ Rn represent the vector containing the spinning rates of the propellers,
i.e., u = [w2

1 . . . w
2
n]⊤, the expressions (2.9) and (2.12) can be succinctly reformulated

as

Bfc = F1u, Bτc = F2u, (2.13)

where the control force input matrix F1 ∈ R3×n and the control moment input
matrix F2 ∈ R3×n, which enclose the propeller arrangement along with the thrust
and drag coefficients, are defined as

F1 =
[
µ1,1 · · · µ1,n

]
, (2.14)

where µ1,i ∈ R3 is given by

µ1,i = cfi

BRPie3, (2.15)

and

F2 =
[
ν2,1 · · · ν2,n

]
, (2.16)

where ν2,i ∈ R3 is given by

ν2,i =
(
cfi

S(Bpi) − kic
+
τi

I3
)
BRPie3. (2.17)

Due to the fact that cfi
and c+

τi
are positive constants, none of the columns of

both F1 and F2 is a zero vector, and therefore, we have both rank(F1) ≥ 1 and
rank(F2) ≥ 1 by construction.

By combining these two matrices, we can define the control input matrix F ∈
R6×n as

F =
[
F1
F2

]
. (2.18)

Remark 1 (Thrust Direction). Henceforth, the direction of the control force
Bf̂c = Bfc/∥Bfc∥ will be defined as the thrust direction of the GTM, indicating the
direction along which the platform can generate thrust. This direction is dictated by
the configuration of the propellers and their respective spinning rates. Specifically,
for a feasible control input vector ū, the thrust direction is supplied by

Bf̂c = F1ū

∥F1ū∥
. (2.19)
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2.5 Dynamics
Finally, we can derive the model of a GTM by combining the kinematics and
dynamics equations. From the second Newton’s law, in the inertial world frame FW ,
the resultant force applied to the platform is equal to the rate of change of its linear
momentum:

Wf = m W v̇,

where the constant m ∈ R>0 is the mass of the platform. The total force acting on
the platform is the sum of the control force and the gravitational force:

Wf = Wfc + Wfg,

where Wfg = −mge3 is the gravitational force acting on the platform, with g being
the acceleration due to gravity. Therefore the linear dynamics of the GTM can be
expressed as

mW v̇ = −mge3 + WRBF1u. (2.20)

Regarding the angular dynamics of the platform, we refer to the second Newton-
Euler law. In the inertial world frame FW , this law states that the resultant
moment acting on the platform equals the time derivative of its angular momentum.
Specifically, this relationship is governed by the equation

Wτ = d

dt

(
WJB

WωW
B

)
,

where WJB ∈ R3×3 denotes the inertia matrix of the platform expressed in the
world frame FW . It is important to note that this matrix is, in general, not constant
when expressed in FW , as it depends on the platform’s orientation. However, when
expressed in the body-fixed frame FB, the inertia matrix, denoted as BJB, becomes
constant, reflecting the structural properties of the platform. By exploiting this
property, from the previous equation we get

WRB
Bτ = d

dt

(
WRB

BJB
BωW

B

)
,

where the orthonormal properties of WRB allow similar transformations also for
moments between FW and FB, ensuring consistency in the representation of the
dynamics without introducing additional complexities. It should be noted that the
transition between the two relationships above was made possible by exploiting the
change of coordinates of an inertia matrix WJ = WRB

BJ WR⊤
B, the change of

coordinates of an angular velocity Wω = WRB
Bω, and the property WRB

WR⊤
B =

I3. Expanding the time derivative term leads to

WRB
Bτ = W ṘB

BJB
BωW

B + WRB
BJB

Bω̇W
B ,

and rewriting the equation in the body-fixed frame FB, we arrive at

Bτ = BRW
W ṘB

BJB
BωW

B + BJB
Bω̇W

B .
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Here, recalling (2.2), the angular dynamics equation in FB takes the form

Bτ = S(BωW
B )BJB

BωW
B + BJB

Bω̇W
B .

The latter fully describes the platform’s angular dynamics in the body-fixed frame,
emphasizing the role of both the inertial and gyroscopic effects. Finally, recalling
that the total control moment acting on the platform is given by (2.12), the angular
dynamics of the GTM can be expressed as

BJB
Bω̇W

B = −BωW
B × BJB

BωW
B + F2u. (2.21)

We are now prepared to derive the complete mathematical model of the GTM.
Before proceeding, we adopt a simplified notation by omitting the explicit depen-
dency of variables on their respective coordinates or frames. This simplification is
made purely for the sake of clarity and brevity, while keeping in mind that such
dependencies remain implicit and must not be overlooked in the interpretation of
the equations. Combining the linear kinematics (2.1), the orientation kinematics
(2.2), the linear dynamics (2.20) and the angular dynamics (2.21), we obtain the
complete mathematical model of a GTM:

ṗ = v,

mv̇ = −mge3 + RF1u,

Ṙ = RS(ω),
Jω̇ = −ω × Jω + F2u,

(2.22)

where we remind that the linear dynamics equation is expressed in the world frame
FW , while the angular dynamics equation is expressed in the body-fixed frame FB.

In Fig. (2.2) a schematic representation of the model (2.22) is shown.
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Figure 2.2. Schematic representation of a GTM. The rotation matrix R plays a fundamental
role as the link between translational and rotational dynamics. This coupling is essential
for accurately describing the platform’s motion and control, and can be strategically
exploited during control law design to address potential underactuation of the platform.
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Chapter 3

Actuation Properties

This chapter systematically examines the actuation properties of a generically tilted
multirotor (GTM), with a focus on the decoupling between force and moment. The
concepts and results presented are based directly on the work of Michieletto et
al. [27], to which we refer for a thorough and rigorous discussion. Their results are
essential for the understanding and development of the main contributions that this
thesis aims to make, and therefore one cannot redeem oneself from not presenting
them. For this reason, this chapter is dedicated to summarising them, with the aim
of providing the reader with the necessary background for what follows.

Throughout the discussion, it is assumed that the GTM satisfies the condition

rank (F2) = 3. (3.1)

Under this assumption, the input space Rn can be decomposed into the orthogonal
subspaces Im

(
F ⊤

2
)

and its orthogonal complement ker
(
F2
)
, as follows:

Rn = Im
(
F ⊤

2
)

⊕ ker
(
F2
)
.

This decomposition allows the control input u ∈ Rn to be expressed via a suitable
transformation. Specifically, one can introduce a nonsingular matrix T ∈ Rn×n,
defined as

T =
[
A2 B2

]
, (3.2)

where the matrices A2 ∈ Rn×3 and B2 ∈ Rn×(n−3) satisfy{
Im(A2) = Im

(
F ⊤

2
)
,

Im
(
B2
)

= ker(F2).
(3.3)

Given the full-rank assumption (3.1), A2 has rank 3, while B2 has rank n− 3. Using
this transformation, the control input can be written as

u = T ũ = A2ũA + B2ũB, (3.4)

where ũA ∈ R3 and ũB ∈ Rn−3.
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Applying this transformation, the control force and moment can be rewritten as

fc = F1u = F1T ũ = F1A2ũA + F1B2ũB =: fAc + fBc , (3.5)
τc = F2u = F2T ũ = F2A2ũA + F2B2ũB =: τAc + τBc . (3.6)

Since Im (B2) = ker (F2), it follows that F2B2x = 0 for any x ∈ Rn−3, so
τBc = 0. Furthermore, the matrix F2A2 ∈ R3×3 is invertible1, ensuring that any
desired moment τ ⋆ ∈ R3 can be achieved by selecting τAc = (F2A2)−1 τ ⋆ in (3.6),
with ũB arbitrary.

The control force fc ∈ Im (F1) =: F ⊆ R3 is thus decomposed into two compo-
nents:

• fAc ∈ Im (F1A2) =: FA ⊆ R3, representing the component induced by the
allocation of inputs required to generate the control moment;

• fBc ∈ Im (F1B2) =: FB ⊆ R3, corresponding to the component that can be
assigned independently of the control moment, via inputs in ker (F2), i.e., ũB.

Since T is nonsingular, it follows that F = FA + FB. Moreover, as 1 ≤ rank(F1) ≤ 3,
it holds that 1 ≤ dim(F) ≤ 3, i.e., 1 ≤ dim(FA) + dim(FB) ≤ 3. In particular, since
FB ⊆ F, one has dim(FB) ≤ dim(F) ≤ 3. The dimension of FB and its relation to F
provide insight into the actuation capabilities of the GTM.

Below we report Definitions 1 and 2 presented in [27], which provide two criteria
for classifying a GTM based on the results just discussed.

Definition 3.1 (First classification of a GTM, [27]). A GTM is said to be

1. fully coupled (FC) if dim(FB) = 0, i.e., if F1B2 = 0. Here, the control force
fc is generated solely by the "spurious" force fAc ;

2. partially coupled (PC) if 1 ≤ dim(FB) < 3 and FB ⊂ F, i.e., the control
force fc is generated by both the "spurious" force fAc and the "free" force fBc ;

3. fully decoupled (FD) if FB = F, or equivalently, if FA ⊆ FB. Here, the
control force fc can be faithfully implemented by the "free" force fBc .

In a fully coupled (FC) GTM, the control force is entirely determined by the
implemented control moment, as fBc = 0 and thus fc = fAc . In a partially coupled
(PC) GTM, the component of the control force within FB can be independently
assigned, while the component within F⊥

B ∩F remains dependent on the implemented
control moment. In a fully decoupled (FD) GTM, the control force can be freely
assigned throughout the entire space F, independently of the control moment. It is
important to note that the FD property does not necessarily imply that the control
force can be assigned in the whole space R3, unless dim(F) = 3.

The second key classification is reported below:

Definition 3.2 (Second classification of a GTM, [27]). A GTM

1. has a decoupled direction (D1) if dim(FB) ≥ 1,
1If A ∈ R3×n has rank 3, then AA⊤ is symmetric positive-definite and invertible.
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2. has a decoupled plane (D2) if dim(FB) ≥ 2,

3. is fully actuated (D3) if dim(FB) = 3.

Combining the previous definitions, we say that a GTM

1. has a single decoupled direction (SD1) if dim(FB) = 1,

2. has a single decoupled plane (SD2) if dim(FB) = 2,

If a GTM is D1, there exists at least one direction in the force space along which
the projection of the control force can be chosen independently of the control moment.
For a GTM that is D2, there exists at least one plane in the force space along which
the projection of the control force can be independently assigned. Finally, if a GTM
is D3, the control force can be assigned freely, independently of the control moment,
throughout the entire space R3.

Moreover, in [27] is shown that the D3 definition is equivalent to the classical
criterion commonly adopted in the literature, namely,

rank (F ) = rank
([

F1
F2

])
= 6. (3.7)

Postmultiplying F by the transformation matrix T in (3.4) does not change its rank:

rank (F T ) = rank
([

F1
F2

] [
A2 B2

])
= rank

([
F1A2 F1B2
F2A2 0

])
= 6. (3.8)

Given the assumption in (3.1), we have rank (F2A2) = 3. Therefore, rank (F ) = 6
if and only if rank (F1B2) = 3, which is precisely the D3 condition as previously
defined.

For completeness and to provide a clear overview, we now summarize all possible
combinations arising from the relationships among the definitions introduced above.
Specifically, Table 3.1—which corresponds to Table 1 in [27]—systematically presents
the interplay between the notions of fully coupled (FC), partially coupled (PC), fully
decoupled (FD), and the existence of decoupled directions and planes (D1, D2, D3).

It is evident that D3 implies both D2 and D1, and D2 implies D1. Moreover,
D1 (and thus D2) can coexist with the PC and FD classifications, but not with
FC: if a GTM is FC, then F1B2 = 0, which is incompatible with the D1 (and D2)
property. Furthermore, D3 implies FD, while the converse is not always true and
depends on the dimension of the space FB.

3.1 Standard (Collinear) Multirotors
For completeness, we briefly recall the classical case of collinear multirotors, which
is widely encountered in real-world applications. This configuration has been exten-
sively studied in the work of Michieletto et al. [27], and here we limit ourselves to
summarizing its main properties for reference.

Standard multirotors are typically characterized by an even number of propellers
arranged in a symmetric configuration, with a balanced selection of clockwise (CW)
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Table 3.1. Classification of GTM actuation properties according to the dimensions of FB

and F (taken from [27]). Color highlights: FC (red), PC (yellow), FD (green), N/A
(gray, invalid combination).

Decoupled Directions

Decoupled Planes

dimFB = 0 dimFB = 1 dimFB = 2 dimFB = 3

FB ⊊ F FC PC & SD1 PC & SD2 N/A

FB = F N/A FD & SD1 FD & SD2 D3 (FD)

dimF ≥ 1 dimF ≥ 1 (⇒ dimF ≥ 2) (⇒ dimF = 3)

and counterclockwise (CCW) types, and all spinning axes aligned parallel to one
another, i.e., zPi = zP for all i ∈ N . This configuration corresponds to the scenario
discussed in Subsection 2.3, where the tilt angles αi and βi are set to zero, resulting
in zPi = zP for all i ∈ N .

Under these conditions, the matrices F1 and F2 take the following forms:

F1 =
[
cf1zP · · · cfnzP

]
, (3.9)

F2 =
[
cf1r1 × zP · · · cfnrn × zP

]
+
[
cτ1zP · · · cτnzP

]
. (3.10)

It is evident that rank(F1) = 1, as all columns are parallel. Conversely, F2 is
composed of two contributions: the cross products cfi

ri× zP , and the drag moments
cτizP . The drag moment matrix has rank 1, as all its columns are parallel. However,
the cross product matrix consists of columns that are linearly independent of the
drag moment columns. Consequently, F2 is full rank if and only if:

rank
([
cf1r1 × zP · · · cfnrn × zP

])
= 2,

which occurs when at least two vectors ri × zP and rj × zP are linearly independent,
for some i, j ∈ N .

The family of standard multirotors consists of systems that satisfy the fully
decoupling (FD) condition. This is evident from the fact that these systems adhere
to the property Im(F ⊤

1 ) ⊆ ker(F2) = Im(B2). From this condition, and recalling
that F1 ̸= 0, it follows that F1B2 ̸= 0. In particular, for any vector x ∈ R3,
one has F2F ⊤

1 x = 0, as F ⊤
1 x ∈ ker(F2). Equivalently, F1F ⊤

2 x = 0, and since
F ⊤

2 x ∈ Im(F ⊤
2 ) = Im(A2), we get F1A2x = 0 for all x ∈ R3, or alternatively:

F1A2 = 0. (3.11)

This result implies FA = {0}, leading to FB = F, thereby confirming that these
systems are FD. The symmetrical geometry and parallel spinning axes of classical
multirotors inherently ensure compliance with this condition.
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To demonstrate that F2F ⊤
1 = 0, we first note that F2F ⊤

1 can be expressed as
the sum Cf + Cτ , where:

Cf =
((∑

i∈N
c2
fi

ri

)
× zP

)
z⊤
P ∈ R3×3, Cτ =

(∑
i∈N

cfi
cτi

)
zPz⊤

P ∈ R3×3.

By appropriately selecting the positions and coefficients {cτi , cfi
} of the propellers,

it is straightforward to make Cf = Cτ = 0. For instance, it suffices to balance the
propellers in pairs, such that ri = −rj , cfi

= cfj
, and cτi = −cτj for i ∈ {1, 2, . . . , n2 }

and j = i+ n
2 . Under these conditions, F2F ⊤

1 = 0, and the system is fully decoupled
(FD).

Furthermore, by referring to the auxiliary table (3.1), it can be observed that such
multirotor systems possess a decoupled direction (D1), while lacking a decoupled
plane (D2) and full actuation (D3). This follows from the fact that rank(F1) = 1,
which implies dim(FB) = 1. Consequently, classical multirotor systems are FD
GTMs with a single decoupled direction (SD1).

In these platforms, the control moment and control force can be treated inde-
pendently. Moreover, two key properties have been instrumental in ensuring the
simplicity and success of their control. First, the control force is always aligned along
a fixed direction in the body frame, regardless of the input u, making it immune to
uncertainties in the propeller spinning rates. Second, the direction of the force in the
world frame can be reliably determined through simple attitude estimation and its
derivative (using a gyroscope), enabling effective control via the fully actuated rota-
tional dynamics. The only trade-off is underactuation, characterized by dim(F) = 1,
which, in many practical scenarios, has not posed significant limitations.

3.2 Tilted Quadrotors
Tilted quadrotors constitute a class of aerial vehicles distinguished by the inclination
of their propeller axes relative to the main body frame. This configuration gives
rise to the phenomenon of spurious force generation, which is central to the devel-
opments presented in this thesis and motivates their selection as a case study for
our simulations. The following section, completely taken from the seminal work of
Michieletto et al. [27], summarizes the key aspects relevant to our discussion.

Consider a system equipped with n = 4 identical propellers, each located at
OPi and characterized by a spinning axis zPi , where i ∈ N = {1, 2, 3, 4}. The
distance from the body center of mass OB to the i-th propeller is denoted by l,
assumed equal for all propellers. The spinning axis of each propeller is tilted by an
angle αi about the axis joining OB and OPi . The tilt angles are assigned such that
consecutive rotors are oriented in opposite directions: specifically, α1 = α3 = α and
α2 = α4 = −α, with α ∈ [0, π2 ].

Assuming uniform aerodynamic properties for all propellers, namely cfi
= cf

and |cτi | = cτ , and defining s(α) = sin(α), c(α) = cos(α), and r = l(cf/cτ ), the force
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and torque allocation matrices F1 and F2 can be expressed as follows:

F1 = cf

 0 s(α) 0 −s(α)
s(α) 0 −s(α) 0
c(α) c(α) c(α) c(α)

 , (3.12)

F2 = cτ

 0 s(α) + rc(α) 0 −s(α) − rc(α)
−s(α) − rc(α) 0 s(α) + rc(α) 0
−c(α) + rs(α) c(α) − rs(α) −c(α) + rs(α) c(α) − rs(α)

 . (3.13)

From (3.12), we observe the following properties of the force space F: if s(α) ̸= 0
and c(α) ̸= 0, then F = R3; if s(α) = 0, then F = span{e3}; and if c(α) = 0,
then F = span{e1, e2}. Furthermore, the matrix F2 in (3.13) is full rank as long
as tan(α) ̸= −r and tan(α) ̸= 1

r . If tan(α) = 1
r (i.e., −c(α) + rs(α) = 0), then

rank(F2) = 2; if tan(α) = −r (i.e., s(α) + rc(α) = 0), then rank(F2) = 1. When
rank(F2) = 3, the input space R4 can be partitioned as described in (3.3). By
choosing a suitable transformation matrix T , such as

T =


0 −1 −1 1
1 0 1 1
0 1 −1 1

−1 0 1 1

 ,
we get

F1T = 2cf

s(α) 0 0 0
0 −s(α) 0 0
0 0 0 2c(α)

 .
When c(α) = 0, the generically tilted multirotor (GTM) is fully coupled (FC)

because dim
(
FB
)

= 0. Conversely, as long as c(α) ̸= 0, we have dim
(
FB
)

= 1,
meaning the GTM has a single decoupled direction (SD1), which corresponds to the
direction e3. In this case, the platform is un-coupled (UC) if and only if s(α) = 0,
since only in this case FB = F (or equivalently, FA = {0} ⊆ FB). Otherwise, when
s(α) ̸= 0, the GTM is partially coupled (PC). The subspace F⊥

B ∩ F = span{e1, e2}
represents the directions along which the projection of the control force depends
entirely on the choice of the control moment. The purpose of this thesis it exactly
to demonstrate the stability properties of a control law capable of mitigating these
coupling effects.
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Part III

Hovering and Control Strategies
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Chapter 4

Static Hoverability Conditions

The formulation of the GTM model in (2.22) allows us to investigate the conditions
under which it can maintain a controlled static equilibrium. Our ultimate goal is to
provide a control law that enables a GTM to achieve static hovering and to rigorously
prove its stability properties. However, since the precise definition of static hovering
and the conditions under which a GTM can realize it are not immediately evident,
the purpose of this chapter is to clarify these foundational aspects.

It is important to emphasize that the present chapter constitutes a synthesis and
critical revision of concepts introduced in the cited works by Michieletto et al. [27,
26]. We restrict ourselves to extracting and adapting certain key notions that are
instrumental for our objectives, while referring the interested reader to the original
papers for a more comprehensive treatment.

We begin by defining the concept of static hover, a concept introduced in [26]:

Definition 4.1 (Static Hover, [26]). A GTM platform, modeled by (2.22), is said to
be in static hover when its position and attitude are stably kept constant:

(p,v,R,ω) = (0,0,R,0).

The state (0,0,R,0) constitutes a locally stable forced equilibrium of the dy-
namics (2.22) for some attitude R ∈ SO(3) and constant input u ∈ Rn. When
the GTM platform is in static hover, it is rendered entirely safe with respect to its
environment, as it exhibits neither translational nor rotational motion.

It is noteworthy, however, that the overwhelming majority of propellers employed
in GTMs are engineered to rotate exclusively in a single direction. This restriction
arises predominantly from the superior efficiency of propellers with asymmetric
profiles, as well as the inherent technical challenges associated with achieving reliable
and rapid reversal of their rotational direction. Consequently, it is imperative to
incorporate this constraint into the model and to rigorously assess its ramifications.

To formalise this constraint, we adopt the notation u ∈ U or u ∈ U+, signifying
that the input vector u is subject to the requirement that each component ui
is nonnegative or strictly positive, respectively. Adopting this new notation, our
objective becomes to undertake a theoretical examination of the conditions under
which a GTM may sustain a controlled static equilibrium, whilst adhering to the
additional constraint u ∈ U .
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An equivalent definition of static hover is provided in [27], expressed in terms of
the equilibrium conditions of the GTM model (2.22). Specifically, the equilibrium is
characterized by the following conditions:

ṗ = 0,
p̈ = 0
ω = 0,
ω̇ = 0.

⇐⇒


ṗ = v = 0,
fc = F1u = mgR⊤e3,

ω = 0,
τc = F2u = 0.

(4.1)

Notably, the equilibrium conditions (4.1) require the ability to exert a control
moment τc in any direction and intensity, along with a control force fc, to ensure
robust control of the GTM. This relies on the proper allocation of the input vector
u ∈ U . To formalize this requirement, we recall Definition 4 and 5 from [27]:

Definition 4.2 (Realizability of any control moment, [27]). A GTM can realize any
control moment τc ∈ R3 if there exists a control input u ∈ U such that τc = F2u.
Formally if

∀ τc ∈ R3, ∃ u ∈ U s.t. τc = F2u. (4.2)

In [11], it has been shown that the aforementioned condition (4.2) is equivalent
to the simultaneous satisfaction of (3.1) and the following condition:

∃ u ∈ U+ s.t. F2u = 0. (4.3)

Definition 4.3 (Realizability of any control force, [27]). A GTM can realize any
control force if it is possible to allocate the input vector u ∈ U to obtain a control
force with any intensity fc ∈ R>0 while the platform is in static hovering. Formally
if

∀ fc ∈ R>0, ∃ u ∈ U s.t. F2u = 0 and ∥F1u∥ = fc. (4.4)

Note that the static hovering equilibrium (4.1) does not force the vehicle in a
certain orientation. As a consequence, when it is possible to generate a control force
with any nonnegative intensity, then it is sufficient to attain the suitable attitude
(orientation) in order to realize any other control force vector.

We are now in a position to state a fundamental result originally presented as
Proposition 1 in [27]:

Proposition 4.1 ([27]). Condition (4.4) is equivalent to the following:

∃ u ∈ U s.t. F2u = 0 and F1u ̸= 0. (4.5)

Proof. We want to show that the conditions (4.4) and (4.5) are equivalent.

1. Suppose that u satisfies (4.4). Then, F2u = 0 and ∥F1u∥ = fc for some
fc ∈ R>0. Since fc > 0, we have that F1u ̸= 0, which implies that u satisfies
(4.5).

2. Suppose that u satisfies (4.5). Then, F2u = 0 and F1u ̸= 0. Since F1u ≠ 0,
we have that ∥F1u∥ ̸= 0. Therefore, ∀fc ∈ R≥0, there exists u = fc

∥F1u∥u

satisfying (4.4).
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4.1 Prerequisites for Static Hoverability
This section establishes the conditions for a GTM to achieve static hovering while
ensuring that the control input satisfies u ∈ U . To implement the virtual inputs τc
and fc in accordance with the equilibrium conditions (4.1), the mappings F1 and F2
must be appropriately "inverted" by allocating u ∈ U accordingly. We recall three
prerequisites that guarantee the feasibility of static hovering, as introduced in [26].

The first requirement is the full actuation of the orientation dynamics, i.e.,
the system must be capable of generating any control moment τc ∈ R3. This is
formalized in Definition 4.2 and is satisfied if (3.1) holds, ensuring that F2 has full
rank, along with the additional constraint (4.3).

The second requirement is the ability to independently regulate the magnitude
of the control force ∥fc∥ without affecting the control moment τc. This property,
captured in Definition 4.3, is met if and only if there exists at least a decoupled
direction in the force space (D1), i.e., if rank

([
F ⊤

1 F ⊤
2

])
≥ 4. Equivalently:

∃ b̂ ∈ ker(F2) s.t. F1b̂ ̸= 0. (4.6)

Choosing û ∈ ker(F2) ensures τc = F2u = 0, so (4.6) is equivalent to (4.5).
Building on these, we introduce Definition 6 from [27], which formalizes static

hoverability for a GTM, encompassing both the necessary conditions for static
hovering and the requirement that u ∈ U .

Definition 4.4 (Static Hovering Realizability, [27]). A GTM is statically hoverable
if it satisfies (3.1), (4.2), and (4.4).

Note that these are necessary conditions for equilibrium as defined in (4.1), but
do not restrict the vehicle’s orientation. Achieving a forced equilibrium requires
a specific direction of the control force, which can only be realized by managing
the GTM’s attitude. Thus, among all possible attitudes, only those that allow
satisfaction of (4.1) are admissible.

As illustrated in Fig. (2.2), the angular velocity ω influences the rotation matrix
R, which affects the translational velocity v and, ultimately, the position p. This
sequential dependency classifies GTMs as cascaded dynamical systems, a structure
often leveraged in control design. Typically, ω and R are stabilized via τc in an
inner loop, independently of the translational dynamics, toward a desired attitude
Rd. In an outer loop, Rd and fc are then used to regulate v and p.

We thus seek a control input u ∈ U such that û ∈ ker(F2) and RF1u = mge3.
Both requirements are satisfied by setting

u = δb̂, with δ = mg

∥F1b̂∥
, (4.7)

where b̂ ∈ ker(F2). The attitude R must then be chosen so that RF1b̂ ∝ e3, aligning
the thrust direction with the required force vector.

This imposes a geometric constraint, defining a line in the input space along
which u must lie to maintain hovering. The precise operating point depends on
the GTM’s mass m and the configuration of the propellers, which determine F1
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and F2. Specifically, F1 determines ∥F1b̂∥, while F2 influences the condition via
b̂ ∈ ker(F2)1.

The third prerequisite concerns input saturation. To maintain hovering equi-
librium, u must belong to the admissible set U = U1 × · · · × Un, with ui ∈ Ui for
all i ∈ N . However, feasibility alone is not sufficient: the hovering point must
allow some operational margin within U to ensure maneuverability for attitude and
position regulation.

To address this, we introduce a conservative subset H = H1 × · · · × Hn, with
Hi ⊂ Ui for all i ∈ N , defining a safety margin. The equilibrium command must
therefore satisfy

δb̂ ∈ H. (4.8)

This ensures the equilibrium input is not too close to actuator limits, preserving the
ability to apply necessary control variations.

The three prerequisites for static hoverability are summarized in the following
proposition, adapted from [26]:

Proposition 4.2 (Static Hoverability Condition (SHC), [26]). A GTM is statically
hoverable if the following conditions are satisfied:

1. rank(F2) = 3,

2. ∃ b̂ ∈ ker(F2) s.t. :

2.1. F1b̂ ̸= 0,
2.2. δ = mg

∥F1b̂∥
, with δb̂ ∈ H.

Finally, we present Proposition 4 from [27], which provides a possible choice for
the decoupled direction in the force space.

Proposition 4.3 ([27]). A statically hoverable GTM has a decoupled direction in
the force space. In particular, for any ũ ∈ H satisfying Proposition 4.2, a possible
choice for the decoupled direction is

d⋆ = F1ũ

∥F1ũ∥
. (4.9)

The preferential direction d⋆ is a unit vector in the body frame FB, determined
solely by the platform’s characteristics, such as propeller arrangement and rotor
properties. It is thus a typical feature of the GTM, independent of the specific
hovering configuration.

Proof. Let ũ ∈ H satisfy Proposition 4.2. In particular,

ũ ∈ ker(F2), F1 ũ ̸= 0.

Since ũ ∈ ker(F2),
F2 ũ = 0,

1Although F2 has full rank, dim(ker(F2)) is not necessarily zero. For F2 of size 3 × n with
n ≥ 3, dim(ker(F2)) ≥ n − 3.
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i.e., no control moment is generated. On the other hand, F1 ũ ≠ 0 guarantees a
nonzero control force.

By construction, d⋆ in (4.9) is a unit vector in FB. Moreover, since ũ lies in
the kernel of F2, any scaling of F1 ũ along this direction does not induce a control
moment. Hence, d⋆ yields the desired decoupled direction in force space, concluding
the proof.

A direct consequence of Proposition 4.2 is stated in Proposition 1 from [26],
which is restated here for clarity:

Proposition 4.4 ([26]). A GTM can be statically hoverable only if |C| ≥ 4.

The following proof is an original and rigorous argument establishing the necessity
of |C| ≥ 4 for static hoverability. While it may differ in style from those found in the
literature, it provides a clear and formal justification for this requirement.

Proof. We aim to show that the condition |C| ≥ 4 is necessary for the existence of a
set of rotors C such that the prerequisites of Proposition 4.2 are satisfied.

Suppose, for contradiction, that the set of controllable rotors C satisfies

0 < |C| = k < 4

and yet the system is statically hoverable as per Proposition 4.2. Under this
assumption, the input control vector can be written as

ui =
{

u⋆i , i ∈ N \ C,
⋆, i ∈ C,

and therefore can be partitioned as

u = uN \C︸ ︷︷ ︸
fixed=u⋆

⊕ uC︸︷︷︸
free, dimension k

.

Let F be the 6 × n control allocation matrix with rank(F ) ≥ 4. Since only the
k components in uC may vary, the space of attainable force-moment vectors

F u = FN \C u⋆ + FC uC

is an affine subspace whose direction space equals Im
(
FC
)
, with

dim
(
Im
(
FC
))

≤ min{6, k} = k < 4.

In other words, regardless of the variations in the k independent inputs, the
resulting space can only cover a k-dimensional portion of the full 6-dimensional
force-moment space. However, achieving static hoverability requires the ability to
cover a subspace of at least four dimensions (three for the control moment and one
for the control force). Therefore, it is necessary that

dim
(
Im
(
FC
))

≥ 4,

which contradicts k < 4. Therefore, necessarily |C| ≥ 4.
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Chapter 5

Hover Control Strategy

In this chapter, we present a hierarchical control strategy for maintaining a generically
tilted multirotor (GTM) in static hover, even in the presence of spurious forces. The
control law is suggested by Michieletto et al. in [26], which can be consulted for a
more detailed explanation.

We begin by defining the class of GTMs under consideration and outlining the
specific control objectives, namely, achieving and maintaining static hover. Subse-
quently, we detail the hierarchical control architecture, emphasizing its ability to
mitigate the effects of spurious forces, which are forces that arise when the refer-
ence control moment is implemented while simultaneously affecting the platform’s
translational dynamics.

5.1 Platforms Class Definition
In this section, we formally recall the class of aerial platforms already identified and
discussed in the previous chapter. Here, we simply summarize the key conditions
that characterize this class and that must be kept in mind for the analyses and
control results developed in the following chapters. In particular, we are considering
platforms whose dynamics are given by (2.22) and enjoy the following properties:

• The number of propellers satisfies n ≥ 4. As shown in Proposition 4.4, this
condition is necessary to guarantee the possibility of static hovering.

• The control moment input matrix F2 in (2.16) associated with the platform
satisfies the rank condition rank(F2) = 3, as already discussed in (3.1).

• It is possible to independently regulate the control force component along at
least one direction, as formalized in (4.6). In matrix terms, the control force
input matrix F1 in (2.14) must satisfy

rank
([

F1
F2

])
≥ 4.

In the following, we will therefore restrict our attention to platforms that satisfy
these properties, as they guarantee the existence of a preferential direction, which is
crucial for the development of the control strategies and theoretical results presented
in the following.



5.2 Control Objective 30

5.2 Control Objective
The primary objective is to regulate the platform to a prescribed constant reference
position pr ∈ R3 and to achieve an orientation that closely approximates a given
constant reference rotation matrix Rr ∈ SO(3). Formally, the control problem
consists in designing an admissible control input ur ∈ U ⊆ Rn such that

lim
t→∞

p(t) = pr, lim
t→∞

R(t) = Rr.

The class of vehicles under consideration is actuated through a control force
fc = F1u, governing the translational dynamics and steering the platform toward
pr, and a control moment τc = F2u, responsible for the attitude dynamics and
reorienting the platform toward Rr.

A critical aspect arises from the requirement that the thrust direction f̂c must
be aligned with the direction of the resultant force necessary to accomplish the
translational objective. If the user-specified reference orientation Rr does not ensure
this alignment, the translational control objective cannot be fulfilled. To address
this, we introduce a modified reference orientation Rd(t), which balances the need to
track the desired attitude while guaranteeing that the thrust direction is compatible
with the required force vector. Consequently, the control objective is reformulated as

lim
t→∞

p(t) = pr, lim
t→∞

R(t) = Rd(t), (5.1)

where the construction of the desired rotation matrix Rd(t) will be detailed in the
following section.

5.3 Hover Control Strategy
The hierarchical control strategy proposed in [26] consisting of two loops: an outer,
slower loop for translational dynamics, which computes the reference control force
fr to solve the command in translation, and an inner, faster loop for attitude
dynamics, which computes the reference control moment τr to execute the command
in orientation. The reference control input ur is then determined by a wrench
mapper, ensuring that τc = F2ur = τr and that, at least, the projection of the
control force fc = F1ur along a specific direction matches the magnitude of the
reference control force fr. In Fig. 5.1, we provide a schematic representation of the
hierarchical control structure.

Position
Controller

Wrench
Mapper

Dynamics

Attitude
Controller

ur

τr

fr

Rd

pr,Rr

p,v,R,ω

Figure 5.1. Hierarchical control structure for a GTM.
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The core idea of the suggested controller is to prioritize attitude control, treating
the desired rotation matrix Rd as an additional control input to ensure that the
thrust direction aligns with the desired one. Once the attitude is stabilized, the
translational dynamics are controlled by adjusting the thrust magnitude, keeping
the platform at the desired position pr while maintaining an attitude close to Rr,
specifically Rd.

A key feature of this strategy is to find a preferential direction in the force space,
d⋆ ∈ Im(F1), along which the control force fc can be adjusted independently of the
control moment τc. This requires finding a unitary vector d⋆ that satisfies the rank
condition

rank
([

F ⊤
1 d⋆ F ⊤

2

])
≥ 4.

If this condition holds, the term d⊤
⋆ F1ur can be freely chosen, while ensuring that

F2ur = τr. Assuming the Static Hovering Conditions (SHCs) from Proposition 4.2
are met, a suitable choice for d⋆ is given by

d⋆ = F1b̂

∥F1b̂∥
, (5.2)

where b̂ is the unit vector defined in the same Proposition. Among the possible
choices for u, we select the one that lies along b̂ so that

f̂c = F1û

∥F1û∥
= F1b̂

∥F1b̂∥
= d⋆.

Thus, the direction of the control force fc coincides with the preferential direction d⋆.
This choice decouples the magnitude of the control force from the control moment.

In summary, the attitude controller generates a reference control moment τr that
ensures

lim
R→Rd

Rf̂c = f̂r,

specifically, rotates the platform so that the thrust direction Rf̂c = Rd⋆ aligns
with the direction of the reference control force f̂r. Once this alignment is achieved,
the magnitude of fc can be adjusted independently of the implementation of τr,
ensuring that both the magnitude and direction of fc match those of fr.

In the following, we provide a detailed description of the position and attitude
controllers, as well as the wrench mapper.

5.3.1 Position Controller

Given a reference position pr ∈ R3 and a reference rotation matrix Rr ∈ SO(3), the
position controller generates a reference control force fr ∈ R3 and a desired rotation
matrix Rd ∈ SO(3).

It is designed to regulate the translational dynamics of the GTM, ensuring that
the platform’s position p converges to the desired position pr and that the velocity
ṗ converges to zero. The translational task can be summarized as follows

lim
t→∞

(p(t), ṗ(t), p̈(t)) = (pr,0,0), (5.3)
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Formally, let ep := p − pr be the position error and v := ṗ be the velocity of
the platform, the reference control force is designed in such a way that (ep,v, v̇) →
(0,0,0), namely

fr = −Kpep − Kvv +mge3, (5.4)

where Kp,Kv ∈ R3×3 are positive definite matrices and allow to tune the effect
of the position tracking error and the velocity feedback term, respectively. This
formulation combines a PD controller with a gravity compensation term.

The role of the position controller is also to provide the desired rotation matrix
Rd, computed by combining two rotations

• A rotation Rb that rotates the preferential direction d⋆ with e3. This is
achieved by exploiting the Rodrigues’ rotation formula:

Rb =
[
rr⊤ + (I3 − rr⊤) cos(θmin) + S(r) sin(θmin)

]
,

where r = d⋆ × e3 and θmin is the minimum angle between d⋆ and e3, i.e.,

θmin = min(θ, π − θ), θ = arccos(⟨d⋆, e3⟩).

In conclusion, the rotation Rb is such that Rbd⋆ = e3.

• A rotation Rw that aligns the the unit vector e3 to f̂r:

Rw =
[
(w3 × w1) × w3 w3 × w1 w3

]
, (5.5)

where w1 := Rre1, i.e., is the first column of Rr and w3 = f̂r. Therefore, the
rotation Rw is such that Rwe3 := f̂r, i.e., is the reference force direction.

The desired orientation matrix is then computed as

Rd = RwRb, (5.6)

and it is such that f̂r = Rdd⋆.

5.3.2 Attitude Controller

Given a desired rotation matrix Rd ∈ SO(3), the attitude controller generates
a reference control moment τr ∈ R3. The latter is designed to ensure that the
platform’s orientation R tracks the desired orientation Rd, and that the angular
velocity ω converges to zero. The control objective is formally stated as

lim
t→∞

(R(t),ω(t), ω̇(t)) = (Rd(t),0,0). (5.7)

To achieve this, we define the attitude tracking errors. The orientation tracking
error eR quantifies the discrepancy between the current orientation R and the desired
orientation Rd. This is evaluated via the following attitude error function on the
tangent bundle of SO(3):

Ψ(R,Rd) = 1
2Tr

[
I3 − R⊤

d R
]
. (5.8)
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This function is positive-definite on SO(3) × SO(3), vanishing if and only if R = Rd,
and is locally positive-definite in the region where the rotation angle between R
and Rd is less than π radians. This set can be represented by the sublevel set of
Ψ where Ψ < 2, denoted as L2 = {Rd,R ∈ SO(3) : Ψ(R,Rd) < 2}, which almost
covers the entire SO(3) manifold.

If the variation in R is expressed as RS(η) for η ∈ R3, the time derivative of Ψ
is

d

dt
Ψ(R,Rd) = −1

2Tr
[
R⊤
d RS(η)

]
.

Using the property −1
2Tr

[
S(x)S(y)

]
= x⊤y for any x,y ∈ R3, and applying the

inverse of the skew-symmetric map S−1(·), we obtain

−1
2Tr

[
R⊤
d RS(η)

]
= 1

2S−1(R⊤
d R − R⊤Rd

)
η.

Thus, the derivative of Ψ becomes

d

dt
Ψ(R,Rd) = 1

2S−1(R⊤
d R − R⊤Rd)η.

From this, we define the attitude tracking error as

eR = 1
2S−1(R⊤

d R − R⊤Rd). (5.9)

This formulation rigorously captures the discrepancy between R and Rd while
respecting the geometric structure of SO(3).

When the desired attitude Rd(t) is time-varying, a corresponding desired angular
velocity ωd(t) arises, leading to the instantaneous angular velocity tracking error
eω = ω − R⊤Rd ωd as defined in (C.7).

It is desirable that both eω and the attitude error (5.9) converge to zero. Rather
than compensating ωd explicitly, we adopt the approach proposed in [26], which
ensures convergence of both eR and ω. Accordingly, to guarantee that (eR,ω, ω̇) →
(0,0,0), the attitude control block provides the following reference control moment:

τr = ω × Jω − KReR − Kωω, (5.10)

where KR,Kω ∈ R3×3 are positive definite matrices, allowing for the tuning of the
rotation tracking error and angular velocity feedback terms, respectively.

5.3.3 Wrench Mapper

The Wrench Mapper is a fundamental component of the control architecture, re-
sponsible for converting the reference commands into the corresponding spinning
rates of the actuators. Specifically, given the reference control wrench

wr =
[
R⊤fr

τr

]
∈ R6, (5.11)

where fr is the reference control force in (5.4) and τr is the reference control moment
in (5.10), the Wrench Mapper computes the associated reference control input ur.
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The capability of the GTM to faithfully reproduce the reference control wrench is
contingent upon the actuation system’s ability to generate the required control force
and moment.

To determine the reference control input that achieves the reference control
wrench in (5.11), we refer to the dynamic model of the multirotor provided in
(2.22) and we utilize the input transformation specified in (3.4). Upon applying the
transformation T to the control input, it can be represented as

ur = uτ + uf , (5.12)

where uτ := A2ũA and uf := B2ũB are the control inputs associated with the
control moment and control force, respectively.

Substituting this control input into the dynamic model yields the following
equations [

mp̈
Jω̇

]
= −

[
mge3

ω × Jω

]
+
[
RF1

(
uτ + uf

)
F2uτ

]
, (5.13)

where the properties of the transformation matrix T in (3.3) have been utilized.
Regarding the design of the reference control input, we give priority to the

implementation of the control moment τr in (5.10) and then, with the remaining
actuators, we will deal with the control force fc so that it can be as similar as
possible to the reference control force fr in (5.4). Specifically, uτ represents the
segment of the reference control input that will be used to completely realize the
reference control torque

uτ = F †
2 τr, (5.14)

where F †
2 represents the pseudoinverse of the F2 matrix, while uf denotes the

portion of the reference control input that will be allocated to approximate the
reference control force as closely as possible. To this end, it is necessary to identify a
suitable segment uf within the input space that will allow the control force RF1ur
to approximate the reference control force fr as well as possible.

By virtue of the input transformation applied earlier, the vector uf has to be in
the null space of matrix F2, and, at the same time, it has to belong in the column
space of matrix F ⊤

1 . This leads to selecting uf as

uf = b̂c, (5.15)

where b̂ ∈ Rn is a unit vector defined in Proposition 4.2, and c ∈ R is a scaling
factor obtained by solving the optimization problem

c = arg min
c∈R

∥∥∥RF1bc−
(
fr − RF1F †

2 τr
)∥∥∥2

. (5.16)

A closed-form solution to this optimization problem exists and is given by

c =

(
fr − RF1F †

2 τr
)⊤

Rd⋆

∥F1b∥
, (5.17)
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where this expression is obtained by recalling the preferential direction d⋆ defined in
(5.2), and noting that the rotation matrix R modifies only the attitude of a vector,
leaving its magnitude unchanged.

Finally, note that the reference control input ur remains feasible, at least in a
neighborhood of the equilibrium, because the commands at equilibrium are designed
to lie well inside the feasible set, as ensured by the third prerequisite in Proposition
4.2.

The attitude closed-loop dynamics are given by

Jω̇ = −ω × Jω + τr, (5.18)

where the reference control moment τr is computed in (5.10). Indeed, the transla-
tional closed-loop dynamics are given by

mp̈ = −mge3 + RF1ur,

where the term RF1ur can be rewritten as

RF1ur =RF1

F †
2 τr + b

(
fr − RF1F †

2 τr
)⊤

Rd⋆

∥F1b∥


= RF1F †

2 τr + Rd⋆
(
fr − RF1F †

2 τr
)⊤

Rd⋆

= Rd⋆ (Rd⋆)⊤ fr +
[
I3 − Rd⋆ (Rd⋆)⊤

]
RF1F †

2 τr.

Let P⋆ := Rd⋆ (Rd⋆)⊤ be the projection matrix onto the preferential direction,
we can rewrite the translational closed-loop dynamics as

mp̈ = −mge3 + P⋆fr + P ⊥
⋆ RF1F †

2 τr.

Since the reference control force can be written as fr = ∥fr∥Rdd⋆, the translational
dynamics can be further simplified by adding and subtracting the term fr in the
equation above, yielding

mp̈ = −mge3 + P⋆fr + fr − fr + P ⊥
⋆ RF1F †

2 τr

= −mge3 + fr + X + P ⊥
⋆ RF1F †

2 τr, (5.19)

where

X := P⋆fr − fr = ∥fr∥(d⊤
⋆ R⊤

d Rd⋆Rd⋆ − Rdd⋆) (5.20)

is a term that highlights the misalignment between the preferential direction and the
desired thrust directions. In other words, it measures the deviation of the control
force from the reference one.

Remark 2 (Spurious Force). The term

P ⊥
⋆ RF1F †

2 τr (5.21)
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in (5.19) is referred to as the spurious force, i.e., the component of the control force
that arises as a consequence of implementing the reference control moment τr. This
force lies in the subspace FA ∩ F⊥

B, i.e., in a subspace along which there is no control
authority. This subspace is orthogonal to the directions along which the control force
can be independently assigned.

The presence and impact of the spurious force are intrinsically linked to the
actuation properties of the platform. In the case of fully decoupled (FD) GTMs,
the spurious force can always be compensated, as it resides within FA, which, for
FD platforms, is a subspace of FB—the space where independent force control is
available. For partially coupled (PC) GTMs, the spurious force is restricted to the
subspace orthogonal to the decoupled directions or planes, i.e., where direct control
authority is lacking. In contrast, for fully coupled (FC) GTMs, the control force is
entirely dictated by the control moment, resulting in the total control force coinciding
with the spurious force. It is important to note, however, that fully coupled platforms
(FC) fall outside the scope of this thesis.

The control law proposed in this thesis is specifically designed to mitigate the
effects of the spurious force in partially coupled (PC) platforms, and the analysis of
its impact on stability represents a central contribution of this work.

The closed-loop system is thus composed of the attitude and translational closed-
loop dynamics given by (5.18) and (5.19), together with the error dynamics for
the position and attitude, ėp and ėR, as defined in (C.3). Explicitly, it can be
summarized as: 

ėp = v,

v̇ = 1
m

(
−mge3 + fr + X + P ⊥

⋆ RF1F †
2 τr

)
,

ėR = C(R,Rd)eω,
ω̇ = J−1 (−ω × Jω + τr) ,

(5.22)

where the matrix C(R,Rd) is defined in (C.2).
The control law introduced in this chapter is specifically designed to ensure that

lim
t→∞

(ep(t), v(t), eR(t), ω(t)) = (0, 0, 0, 0), (5.23)

which formalizes the objectives stated in (5.3) and (5.7). As shown in the next
chapter, the point (ep,v, eR,ω) = (0,0,0,0) constitutes an equilibrium point of the
closed-loop system in (5.22). The demonstration of the stability properties of this
equilibrium point will be the subject of the next chapter and constitutes the main
contribution of this thesis.

5.4 Control Strategy Motivations
This section provides the motivations behind the adopted control strategy. A
seemingly natural approach is to design the reference control moment τr so that the
attitude tracking errors eR and eω asymptotically vanish, thus ensuring convergence
of the platform’s attitude to the desired configuration. However, this solution does
not guarantee the elimination of the spurious force. We show that the proposed
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control law not only achieves the attitude objective stated in (5.7), but also enables
suppression of the spurious force.

Since Rd is a time-varying rotation matrix, it is associated with a desired angular
velocity ωd and a desired angular acceleration ω̇d. One might therefore be inclined
to formulate the control law so that eR and eω are driven to zero, leading to the
reference control moment proposed by Lee et al. in [22]:

τ̃r = ω × Jω − KReR − Kωeω − J
(
ω × R⊤Rdωd − R⊤Rdω̇d

)
. (5.24)

The final term in (5.24) serves as a feedforward component, necessitated by the
time-varying nature of Rd. This term is essential for accurate tracking of the desired
orientation, as it accounts for both ωd and ω̇d. The role of the reference control
torque τ̃r is to make the actual attitude dynamics mimic the desired ones. As the
attitude tracking errors eR and eω converge to zero, the current attitude dynamics
increasingly resemble the desired dynamics. Nevertheless, this approach fails to
ensure the nullification of the spurious force.

From (5.21), it follows that

P ⊥
⋆ R F1 F †

2 τ̃r = 0 ⇐⇒ τ̃r → 0.

However, τ̃r is a function of both ωd and ω̇d. As demonstrated in Appendix D,
ωd itself depends on the reference control force fr and its derivative, while ḟr is
influenced by the spurious force, and thus by τ̃r.

This interdependence reveals a problematic circularity: attempting to design τ̃r
solely to drive the attitude-tracking errors to zero induces a feedback loop between
the reference control moment and the spurious force, perpetuating the excitation of
the latter.

τ̃r

ωd, ω̇dfr, ḟr, f̈r

(a)

τr

ωd, ω̇dfr, ḟr, f̈r

(b)

Figure 5.2. (a): The choice of τ̃r induces a circular dependency between the control
moment and the spurious force. (b): The proposed control law breaks this circularity.

The approach proposed by Michieletto et al. [26] departs from the standard
objective of driving the tracking error eω to zero. Instead, the control law is designed
so that the actual angular velocity ω converges directly to zero. This ensures
that, in steady-state conditions (such as static hovering), the control moment—and
consequently any spurious force—naturally vanishes, while still maintaining full
attitude control.
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Part IV

Stability Analysis
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Chapter 6

Stability Analysis

In this chapter, we present a comprehensive stability analysis of the control law
developed in Chapter 5, designed for platforms affected by spurious force genera-
tion. The analysis methodology is inspired by the framework established by Lee et
al. [22], and is adapted to address the specific characteristics of the system under
consideration.

The analysis focuses on the closed-loop system dynamics presented in (5.22),
within the set L1 = {R,Rd ∈ SO(3) : Ψ(R,Rd) < 1}, corresponding to attitude
errors less than 90◦. The stability analysis will be conducted by considering the
Lyapunov stability theory. In particular, we will define a Lyapunov candidate
function V for the closed-loop system and we will go in search of three class K∞
functions α1, α2, and α3 such that

α1(∥e∥) ≤ V ≤ α2(∥e∥), V̇ ≤ −α3(∥e∥), (6.1)

with

α1(∥e∥) = λ1∥e∥2, α3(∥e∥) = λ3∥e∥2.

The relevant definitions of stability—including Lyapunov stability, asymptotic
stability, and exponential stability—are provided in Appendix B. Exponential stabil-
ity is of particular interest in control systems, as it ensures not only convergence of
system trajectories to the equilibrium point, but also that this convergence occurs
at a rate characterized by an exponential function. This property is highly desirable,
as it enables explicit performance guarantees and facilitates robustness analysis with
respect to model uncertainties and external disturbances.

The following analysis therefore aims to demonstrate the exponential stability of
the closed-loop system, showing that the proposed control law ensures both rapid
convergence and strong resilience to perturbations, despite the presence of spurious
forces.

Remark 3. For simplicity, from this point onward, we assume that the gain matrices
Kp, Kv, KR and Kω presented in (5.4) and (5.10) are diagonal and isotropic, i.e.,
they can be written as a positive scalar times the identity matrix, K∆ = k∆I3, with
k∆ > 0 for ∆ ∈ {p; v;R;ω}. This assumption does not restrict the generality of
the analysis, but allows us to focus on the essential dynamics without unnecessary
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notational complexity. The stability analysis can be extended to more general cases
with non-diagonal and/or non-isotropic gain matrices, at the cost of increased
notational burden and without providing additional insight into the stability properties
of the closed-loop system.

6.1 Local Exponential Stability
We begin by reformulating the closed-loop system in (5.22), using the definitions of
the reference control force fr and moment τr from (5.4) and (5.10). The resulting
closed-loop dynamics are:

ėp = v,

mv̇ = −Kpep − Kvv + X + P ⊥
⋆ RF1F †

2
(
S(ω)Jω − KReR − Kωω

)
,

ėR = C(R⊤
d R)

(
ω − R⊤Rdωd

)
,

Jω̇ = −KReR − Kωω,

(6.2)

where the angular velocity tracking error eω from (C.7) has been incorporated into
the third equation.

Appendix D details how the desired angular velocity ωd can be expressed as a
function of the tracking errors eR, ω, ep, and v, with the final result summarized
in (D.6). Specifically, using w3 = f̂r and ẇ3 = ˙̂

fr as defined in (D.10), the desired
angular velocity is given by:

ωd =R⊤
d [I3 + r̂⊤

1 f̂r

∥f̂r × r̂1∥2
f̂rr̂

⊤
1 ]
(
f̂r × 1

∥fr∥
(I3 − f̂rf̂

⊤
r )ḟr

)
. (6.3)

The time derivative of the reference control force fr is

ḟr = −Kpėp − Kvv̇, (6.4)

where ėp = v and v̇ is given by the second equation of (6.2). Substituting these, we
obtain

ḟr = 1
m

KvKpep +
( 1
m

K2
v − Kp

)
v − 1

m
KvX

− 1
m

KvP
⊥
⋆ RF1F †

2 (S(ω)Jω − KReR − Kωω). (6.5)

This explicit expression for ḟr can be substituted into (6.3), yielding a complete
characterization of ωd in terms of the tracking errors and control gains. The resulting
closed-loop system can be written as:

ėp = v,

mv̇ = −Kpep − Kvv + X + P ⊥
⋆ RF1F †

2
(
S(ω)Jω − KReR − Kωω

)
,

ėR = C(R⊤
d R)

{
ω − R⊤[I3 + r̂⊤

1 f̂r

∥f̂r × r̂1∥2
f̂rr̂

⊤
1 ]
[
f̂r × 1

∥fr∥
(
I3 − f̂rf̂

⊤
r

)
(

1
mKvKpep +

( 1
mK2

v − Kp
)
v − 1

mKvX

− 1
mKvP

⊥
⋆ RF1F †

2
(
S(ω)Jω − KReR − Kωω

))]}
,

Jω̇ = −KReR − Kωω.

(6.6)
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It is straightforward to verify that the origin (ep,v, eR,ω) = (0,0,0,0) is an
equilibrium point1 for the closed-loop system (6.6).

Proposition 6.1 (Local Exponential Stability). Let us consider the closed-loop
tracking errors system (6.6), derived by closing the loop with the reference control
force fr, reference control moment τr, and reference control input ur as defined in
(5.4), (5.10), and (5.12), respectively.

Assume that

Ψ(R(t),Rd(t)) < 1, ∀t ≥ 0, (6.7)

Define the matrices W1, W2 and W̃ ∈ R3×3 as follows:

W1 =
[
c1
kp

m (1 − emax
R ) −c1

kv
2m(1 + emax

R )
−c1

kv
2m(1 + emax

R ) kv(1 − emax
R ) − c1

]
,

W2 =
[
c2

kR
λmax(J) − kRkvα (mg + kRγ) −σR,ω

2
−σR,ω

2 kω − c2
(
1 + kvγα

(
β + kω

))] ,
W̃ = W12 + W21,

where

σR,ω := c2

(
kω

λmin(J) + kvγα (mg + kRγ)
)

+ kRkvγα(β + kω),

W12 =
[

c1(g + kR
γ
m) c1

γ
m

(
β + kω

)
kpe

max
p +mg + γkR γ

(
β + kω

) ] ,
W21 =

[
kRkpkvα(1 + emax

R ) c2kpkvα(1 + emax
R )

kRαm
(∣∣k2

v
m − kp

∣∣+ k2
v
m e

max
R

)
c2αm

(∣∣k2
v
m − kp

∣∣+ k2
v
m e

max
R

)] .
Let c1, c2, kp, kv, kR, kω be positive constants such that the following conditions

hold:

c1 < min
{√

mkp, kv (1 − emax
R ), 4 kp kvm (emax

R − 1)2

k2
v (emax

R + 1)2 + 4 kpm (1 − emax
R )

}
, (6.8)

c2 < min
{√

λmin(J)kR,
kω

1 + kvγα(β + kω) , c2,+

}
, (6.9)

c2 > max
{
kvλmax(J)α

(
mg + kRγ

)
, c2,−

}
, (6.10)

∥W̃ ∥2 < 4λmin(W1)λmin(W2). (6.11)

Then, the equilibrium point (ep,v, eR,ω) = (0,0,0,0) is locally exponentially
stable. A region inside which the system is guaranteed to be stable is defined as:

D :=
{
(ep,v,R,ω) ∈ R3 × R3 × SO(3) × R3 | ∥ep∥ < emax

p , R ∈ L1, ∥ω∥ < ωmax} (6.12)

where L1 = {R,Rd ∈ SO(3) : Ψ(R,Rd) < 1} corresponds to attitude errors less
than 90◦, and emax

p and ωmax are bounds on the position and angular velocity errors,
respectively. In particular, emax

p can be chosen as

λmax(M12)∥z1(0)∥ + λmax(M22)∥z2(0)∥ < 1
2kpe

max
p , (6.13)

1Indeed, when eR = 0, also X vanishes, as can be seen from its definition in (5.20)
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where z1 =
[
∥ep∥ ∥v∥

]⊤
and z2 =

[
∥eR∥ ∥ω∥

]⊤
and the matrices M12 and M21

are defined as

M12 =
[
kp c1
c1 m

]
, M22 =

[
2kR
2−ψ c2
c2 λmax(J)

]
.

In the subsequent sections, we rigorously establish the proof of Proposition
6.1, confining our analysis to the domain D as delineated in (6.12). This domain
characterizes the set of admissible states for which the local exponential stability of
the closed-loop tracking error system can be guaranteed.

It is important to note that the actual region of attraction—namely, the set of
initial conditions from which the system trajectories remain within D for all future
times and asymptotically converge to the equilibrium—constitutes a subset of D.
Specifically, we define the region of attraction as

Da =
{
(ep,v,R,ω) ∈ D : ∥ep(0)∥ < emax

p , ∥eR(0)∥ < emax
R , ∥ω(0)∥ < ωmax}.

(6.14)

Within this set, the closed-loop system is guaranteed to exhibit the desired local
exponential convergence properties.

6.2 Lyapunov Candidate Function
To analyze the stability properties of the equilibrium point (ep,v, eR,ω) = (0,0,0,0),
we construct a Lyapunov candidate function for the closed-loop system. Consider
the following composite function:

V (ep,v, eR,ω) = V1(ep,v) + V2(eR,ω), (6.15)

where

V1(ep,v) = 1
2m∥v∥2 + 1

2kp∥ep∥2 + c1e⊤
p v, (6.16)

V2(eR,ω) = 1
2ω⊤Jω + kRΨ(R,Rd) + c2e⊤

Rω. (6.17)

Here, c1 and c2 are non-negative scalar parameters which are introduced to facilitate
the Lyapunov analysis and can be appropriately selected to guarantee exponential
stability.

The time derivative of V along the trajectories of the closed-loop system (6.2) is
given by

V̇ (ep,v, eR,ω) = V̇1(ep,v, eR,ω) + V̇2(ep,v, eR,ω), (6.18)

where

V̇1(ep,v, eR,ω) = mv⊤v̇ + kpe
⊤
p v + c1e⊤

p v̇ + c1∥v∥2, (6.19)

V̇2(eR,ω, ep,v) = ω⊤Jω̇ + kRΨ̇(R,Rd) + c2
(
ė⊤
Rω + e⊤

Rω̇
)
. (6.20)
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Substituting the closed-loop dynamics for v̇ from (6.2) into (6.19), we obtain

V̇1 = v⊤
(
−Kpep − Kvv + X + P ⊥

⋆ RF1F †
2 (S(ω)Jω − KReR − Kωω)

)
+ c1
m

e⊤
p

(
−Kpep − Kvv + X + P ⊥

⋆ RF1F †
2 (S(ω)Jω − KReR − Kωω)

)
+ kpe

⊤
p v + c1∥v∥2.

By collecting like terms, the above expression can be rewritten as

V̇1 = −(kv − c1)∥v∥2 − c1
kp
m

∥ep∥2 − c1
kv
m

e⊤
p v

+
(
c1
m

e⊤
p + v⊤

)
P ⊥
⋆ RF1F †

2 (S(ω)J − kωI3) ω

− kR

(
c1
m

e⊤
p + v⊤

)
P ⊥
⋆ RF1F †

2 eR +
(
c1
m

e⊤
p + v⊤

)
X. (6.21)

Similarly, the time derivative of V2 can be expanded by substituting the expres-
sions for ėR and ω̇ from the last two equations in (6.2), as well as Ψ̇(R,Rd) from
(C.1), into (6.20), yielding

V̇2 = − kω∥ω∥2 + c2ω⊤C(R⊤
d R)ω − c2kRe⊤

RJ−1eR − c2kωe⊤
RJ−1ω

− c2ω⊤C(R⊤
d R)R⊤Rdωd − kRe⊤

RR⊤Rdωd, (6.22)

in which we have used the expression of the angular velocity tracking error eω from
(C.7).

6.3 Bounding the Lyapunov Candidate Derivative
In this section, we establish an upper bound for the time derivative of the Lyapunov
candidate function V as defined in (6.15).

To facilitate the analysis, we decompose the derivative V̇ into two components,
V̇1 and V̇2, and derive separate bounds for each. We then combine these results to
obtain an overall bound for V̇ .

6.3.1 Bounding the First Lyapunov Derivative

To derivative an upper bound for the Lyapunov candidate V̇1, we can exploit the
following inequalities:

−c1
kv
m

e⊤
p ev ≤ c1

kv
m

∥ep∥∥ev∥, (6.23)

∥c1
m

e⊤
p + e⊤

v ∥ ≤ c1
m

∥ep∥ + ∥ev∥, (6.24)

∥S(ω)J − kωI3∥ ≤ λmax(J)ωmax + kω, (6.25)

where we are assuming that the system dynamics are uniformly globally bounded.
Thereby, we can say that the angular velocity magnitude is bounded by ωmax, which
denote this upper bound.
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Additionally, we need to bound the terms P ⊥
⋆ RF1F †

2 and X. For the term
∥P ⊥

⋆ RF1F †
2 ∥, we can write:

∥P ⊥
⋆ RF1F †

2 ∥ ≤ ∥P ⊥
⋆ ∥ ∥R∥ ∥F1∥ ∥F †

2 ∥ = σmax(F1)
σmin(F2) =: γ, (6.26)

where:

• σmax(F1) and σmin(F2) denote the maximum singular value of F1 and the
minimum singular value of F2, respectively;

• ∥P ⊥
⋆ ∥ = 12;

• ∥R∥ = 1.

The ratio σmax(F1)
σmin(F2) depends on the configuration of the GTM and quantifies the

relative scaling between the maximum amplification induced by F1 and the minimum
amplification maintained by F2. A large value indicates that F1 can strongly amplify
certain directions, while F2 may significantly attenuate in at least one direction,
potentially leading to instability. Conversely, a smaller ratio suggests that both F1
and F2 exhibit similar amplification properties across all directions, indicating more
uniform and stable system behavior.

To bound the term X, recall its definition in (5.20). By the sub-multiplicative
property of norms,

∥X∥ ≤ ∥fr∥
∥∥∥(d⊤

⋆ R⊤
d Rd⋆

)
Rd⋆ − Rdd⋆

∥∥∥ .
We analyze each factor:

• The force term is bounded as ∥fr∥ ≤ kp∥ep∥ + kv∥ev∥ +mg.

• The second term can be rewritten using the vector triple product:(
d⊤
⋆ R⊤

d Rd⋆
)

Rd⋆ − Rdd⋆ = f̂c × (f̂c × f̂r),

where f̂c = Rd⋆ and f̂r = Rdd⋆ are unit vectors. The norm of this expression
is sin(β), where β is the angle between f̂c and f̂r.

Therefore, ∥∥∥(d⊤
⋆ R⊤

d Rd⋆
)

Rd⋆ − Rdd⋆
∥∥∥ = sin(β) = ∥eR∥ =

√
Ψ(2 − Ψ),

where Ψ is the attitude error function, bounded above by 2. This equality has
already been proven in Appendix C, specifically in (C.6). Thus,

∥X∥ ≤
(
kp∥ep∥ + kv∥ev∥ +mg

)
∥eR∥ ≤

(
kp∥ep∥ + kv∥ev∥ +mg

)
emax
R . (6.27)

2To show that ∥P ⊥
⋆ ∥2 = 1, consider a vector v = αRd⋆ + z. This vector is an eigenvector of

P ⊥
⋆ if and only if there exists λ ∈ R such that P ⊥

⋆ v = λ v. In particular:
– If z = 0, then P ⊥

⋆ v = α P ⊥
⋆ Rd⋆ = 0, which implies λ = 0.

– If α = 0, then P ⊥
⋆ v = z, and hence λ = 1.

Thus, the eigenvalues are λ = 0 (multiplicity 1) and λ = 1 (multiplicity 2).
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Finally, we can combine all these bounds to obtain an upper bound for the
Lyapunov candidate derivative V̇1:

V̇1 ≤ −(kv − c1)∥v∥2 − c1
kp
m

∥ep∥2 + c1
kv
m

∥ep∥∥v∥

+
(c1
m

∥ep∥ + ∥v∥
)
γ
((
λmax(J)ωmax + kω

)
∥ω∥ + kR∥eR∥

)
+
(c1
m

∥ep∥ + ∥v∥
)(
kp∥ep∥ + kv∥v∥ +mg

)
∥eR∥.

Note that the above expression contains a third-order error term, specifically
kp∥eR∥∥ep∥∥ev∥. While this term can be bounded using ∥eR∥ ≤ emax

R , doing so
complicates the stability analysis and may require a tighter bound on the initial
attitude error. To simplify the analysis, we instead impose an upper bound emax

p

on the position tracking error ∥ep∥, treating it as a design parameter. With this
restriction and rearranging the terms, the bound becomes

V̇1 ≤ −
(
kv(1 − emax

R ) − c1
)
∥v∥2 + c1

kv
m

(1 + emax
R )∥ep∥∥v∥

− c1
kp
m

(1 − emax
R )∥ep∥2 + c1

(
g + γ

kR
m

)
∥ep∥∥eR∥ + kpe

max
p ∥v∥∥eR∥

+
(
mg + γkR

)
∥v∥∥eR∥ + c1

γ

m

(
λmax(J)ωmax + kω

)
∥ep∥∥ω∥

+ γ
(
λmax(J)ωmax + kω

)
∥v∥∥ω∥.

By rearranging the terms, we can write the Lyapunov derivative as

V̇1 ≤ −z⊤
1 W1z1 + z⊤

1 W12z2, (6.28)

where z1 =
[
∥ep∥ ∥v∥

]⊤
and z2 =

[
∥eR∥ ∥ω∥

]⊤
. The matrices W1 and W12 are

defined as

W1 =
[
c1
kp

m (1 − emax
R ) −c1

kv
2m(1 + emax

R )
−c1

kv
2m(1 + emax

R ) kv(1 − emax
R ) − c1

]
, (6.29)

W12 =
[

c1(g + kR
γ
m) c1

γ
m

(
λmax(J)ωmax + kω

)
kpe

max
p +mg + γkR γ

(
λmax(J)ωmax + kω

) ] . (6.30)

6.3.2 Bounding the Second Lyapunov Derivative

Let us analyze the structure of the Lyapunov candidate derivative V̇2 defined in
(6.22) in order to derive bounds. To this end, we are going to analyze each term
separately.

• First term: c2ω⊤C⊤(R⊤
d R)ω. By applying the bound from (C.4), we have

c2ω⊤C⊤(R⊤
d R)ω ≤ c2∥ω∥2. (6.31)

• Second term: −c2kRe⊤
RJ−1eR. Since J is positive definite, its inverse is also

positive definite. Thus,

λmin(J−1)∥eR∥2 ≤ e⊤
RJ−1eR ≤ λmax(J−1)∥eR∥2,
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where λmin(J−1) = 1/λmax(J). Therefore,

−c2kRe⊤
RJ−1eR ≤ − c2kR

λmax(J)∥eR∥2. (6.32)

• Third term: −c2kωe⊤
RJ−1ω. Using the Cauchy-Schwarz inequality and

λmax(J−1) = 1/λmin(J), we obtain

−c2kωe⊤
RJ−1ω ≤ c2kω

λmin(J)∥eR∥∥ω∥. (6.33)

• Fourth term: −c2ω⊤C(R⊤
d R)R⊤Rdωd. Using the bound from (C.4) and

the fact that rotation matrices are orthogonal (i.e., ∥R∥ = 1 for all R ∈ SO(3)),
we obtain

−c2ω⊤C(R⊤
d R)R⊤Rdωd ≤ c2∥ω∥∥ωd∥. (6.34)

• Fifth term: −kRe⊤
RR⊤Rdωd. Applying the Cauchy-Schwarz inequality and

the orthogonality of rotation matrices, we have

−kRe⊤
RR⊤Rdωd ≤ kR∥eR∥∥ωd∥. (6.35)

In conclusion, by combining (6.31), (6.32), (6.33), (6.34) and (6.35) we can write

V̇2 ≤ − (kω − c2)∥ω∥2 − c2
kR

λmax(J)∥eR∥2 + c2
kω

λmin(J)∥eR∥∥ω∥

+ c2∥ω∥∥ωd∥ + kR∥eR∥∥ωd∥.

Finally, by combining the bound for the desired angular velocity in (D.11) and
the boundedness of the terms X and τr in (6.27) and (6.25), respectively, we get a
final bound for the desired angular velocity:

∥ωd∥ ≤
(

1 + δ

1 − δ2

)[
kpkv
m2g

(1 + emax
R )∥ep∥ + 1

mg

(∣∣k2
v

m
− kp

∣∣+ k2
v

m
emax
R

)
∥v∥

+ kv
mg

(
g + γkR

m

)
∥eR∥ + kv

m2g
γ (λmax(J)ωmax + kω) ∥ω∥

]
(6.36)

Replacing this bound into the expression for V̇2, and rearranging the terms, we
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get

V̇2 ≤ −
[
kω − c2

(
1 +

(
1 + δ

1 − δ2

) kv
m2g

γ
(
λmax(J)ωmax + kω

))]
∥ω∥2

+
[(

1 + δ

1 − δ2

)kRkv
mg

(
g + kRγ

m

)
− c2

kR
λmax(J)

]
∥eR∥2

+
[
c2

(
kω

λmin(J) +
(
1 + δ

1 − δ2

) kv
mg

(
g + kRγ

m

))

+ kR
(
1 + δ

1 − δ2

) kv
m2g

γ
(
λmax(J)ωmax + kω

)]
∥eR∥∥ω∥

+
(
1 + δ

1 − δ2

)kRkpkv
m2g

(1 + emax
R )∥eR∥∥ep∥

+
(
1 + δ

1 − δ2

) kR
mg

(∣∣k2
v

m
− kp

∣∣+ k2
v

m
emax
R

)
∥eR∥∥v∥

+ c2
(
1 + δ

1 − δ2

)kpkv
m2g

(1 + emax
R )∥ω∥∥ep∥

+ c2
(
1 + δ

1 − δ2

) 1
mg

(∣∣k2
v

m
− kp

∣∣+ k2
v

m
emax
R

)
∥ω∥∥v∥. (6.37)

To make the notation more compact and readable, we introduce the auxiliary
variable

α :=
(

1 + δ

1 − δ2

) 1
m2g

, (6.38)

β := λmax(J)ωmax. (6.39)

The previous bound can thus be rewritten in matrix form as

V̇2 ≤ −z⊤
2 W2z2 + z⊤

1 W21z2, (6.40)

where z1 =
[
∥ep∥ ∥v∥

]⊤
and z2 =

[
∥eR∥ ∥ω∥

]⊤
. The matrices W2 and W21 are

given by

W2 =
[
c2

kR
λmax(J) − kRkvα (mg + kRγ) −σR,ω

2
−σR,ω

2 kω − c2
(
1 + kvγα

(
β + kω

))] , (6.41)

W21 =
[

kRkpkvα(1 + emax
R ) c2kpkvα(1 + emax

R )
kRαm

(∣∣k2
v
m − kp

∣∣+ k2
v
m e

max
R

)
c2αm

(∣∣k2
v
m − kp

∣∣+ k2
v
m e

max
R

)] . (6.42)

where σR,ω := c2
(

kω
λmin(J) + kvγα (mg + kRγ)

)
+ kRkvγα(β + kω).

6.3.3 Combining the Lyapunov Derivative Bounds

In this section, we have derived an upper bound for the time derivative of the
Lyapunov candidate derivative V̇ as defined in (6.18) by combining the bounds for
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V̇1 and V̇2 obtained in Sections 6.3.1 and 6.3.2, respectively. The resulting bound is
given by

V̇ ≤ −z⊤
1 W1z1 + z⊤

1 W̃ z2 − z⊤
2 W2z2, (6.43)

where the matrices W1 and W2 are defined in (6.29) and (6.41) respectively. The
matrix W̃ is defined as the sum of the matrices W12 and W21, which are defined in
(6.30) and (6.42) respectively.

6.4 Bounding the Lyapunov Candidate
The aims of this section are to establish a lower bound and an upper bound for the
Lyapunov candidate function V as defined in (6.15). To achieve this, we will first
derive bounds for the components V1 and V2 of the Lyapunov candidate, which are
defined in (6.16) and (6.17), respectively. We will then combine these bounds to
obtain the desired bounds for V .

6.4.1 Bounding the First Lyapunov Candidate

Let us analyze the structure of the Lyapunov candidate V1 defined in (6.16). We
observe that the cross-term c1∥ep∥∥v∥ can be both positive and negative, depending
on the sign of c1. Therefore, V1 can be bounded as follows:

1
2z⊤

1 M11z1 ≤ V1 ≤ 1
2z⊤

1 M12z1, (6.44)

where the vector z⊤
1 =

[
∥ep∥ ∥v∥

]
has been defined, and the matrices M11 and

M12 are given by

M11 =
[
kp −c1

−c1 m

]
, (6.45)

M12 =
[
kp c1
c1 m

]
. (6.46)

6.4.2 Bounding the Second Lyapunov Candidate

Let us analyze the structure of the Lyapunov candidate V2 defined in (6.17) in order
to derive bounds. To this end, we are going to analyze each term separately. We
can bound the first and the last terms by

1
2λmin(J)∥ω∥2 ≤ 1

2ω⊤Jω ≤ 1
2λmax(J)∥ω∥2, (6.47)

−c2∥eR∥∥ω∥ ≤ c2e⊤
Rω ≤ c2∥eR∥∥ω∥. (6.48)

As far as the second term is concerned, exploiting the relations in (C.6) for the
attitude error function Ψ(R,Rd), we can derive the following bound

1
2∥eR∥2 ≤ Ψ(R,Rd). (6.49)
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Moreover, in order to solve the translational task, the projection of the reference
force fr along the preferential direction has to be positive, namely

Ψ(R(t),Rd(t)) ≤ ψ < 1, ∀t ≥ 0. (6.50)

Under these assumptions, we find the following bound

1
2 − ψ

∥eR∥2 ≥ Ψ(R,Rd). (6.51)

Putting together the bounds in (6.49) and (6.51), we can conclude that

1
2∥eR∥2 ≤ Ψ(R,Rd) ≤ 1

2 − ψ
∥eR∥2. (6.52)

Remark 4 (emax
R ). The maximum value of the attitude error emax

R can be found
exploiting the equation (5.9) and the constraint in (6.50). We get

∥eR∥ =
√

Ψ(2 − Ψ) ≤
√
ψ(2 − ψ) =: emax

R . (6.53)

By leveraging the bounds in (6.47), (6.48) and (6.52), we can finally conclude
that

1
2z⊤

2 M21z2 ≤ V2 ≤ 1
2z⊤

2 M22z2, (6.54)

where

M21 =
[
kR −c2
−c2 λmin(J)

]
, (6.55)

M22 =
[

2kR
2−ψ c2
c2 λmax(J)

]
. (6.56)

6.4.3 Combining the Lyapunov Candidate Bounds

By merging the bounds of V1 and V2 respectively expressed in (6.44) and (6.54), we
can write

1
2z⊤

1 M11z1 + 1
2z⊤

2 M21z2 ≤ V ≤ 1
2z⊤

1 M12z1 + 1
2z⊤

2 M22z2, (6.57)

where the matrices M11, M12, M21 and M22 are defined in (6.45), (6.46), (6.55)
and (6.56), respectively.

6.5 Final Results
To establish exponential stability of the equilibrium (ep,v, eR,ω) = (0,0,0,0), it
is sufficient to ensure that the matrices M11, M12, M21, M22, W1, and W2 are
all positive definite. This requirement can be met by appropriately selecting the
parameters c1 and c2, as detailed below.
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The parameter c1 must satisfy the following inequality:

c1 < min
{√

mkp, kv (1 − emax
R ), 4 kp kvm (emax

R − 1)2

k2
v (emax

R + 1)2 + 4 kpm (1 − emax
R )

}
.

This ensures the positive definiteness of the associated matrices.
For c2, a set of inequalities must be satisfied

c2 <min
{√

λmin(J)kR,
kω

1 + kvγα(β + kω) , c2,+

}
,

c2 >max
{
kvλmax(J)α

(
mg + kRγ

)
, c2,−

}
.

A rigorous derivation of the conditions presented in (6.8), as well as the bounds
in (6.9) and (6.10), is provided in Appendix E, to which the interested reader is
referred for further details.

With the above parameter choices, the Lyapunov candidate function V is bounded
as follows:

λmin(M11)∥z1∥2 + λmin(M21)∥z2∥2 ≤ V ≤ λmax(M12)∥z1∥2 + λmax(M22)∥z2∥2.

Furthermore, its time derivative can be bounded by

V̇ ≤ −λmin(W1)∥z1∥2 + ∥W̃ ∥∥z1∥∥z2∥ − λmin(W2)∥z2∥2.

This can be compactly expressed as

V̇ ≤ −
[
∥z1∥ ∥z2∥

] [λmin(W1) −∥W̃ ∥
2

−∥W̃ ∥
2 λmin(W2)

] [
∥z1∥
∥z2∥

]
.

Finally, to guarantee that V̇ is negative definite, the matrix above must be
positive definite. This is equivalent to requiring

∥W̃ ∥2 < 4λmin(W1)λmin(W2).

By ensuring all the above conditions are satisfied, exponential stability of the
equilibrium is guaranteed.



51

Part V

Simulations and Conclusion
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Chapter 7

Simulations and Results

This chapter presents and analyzes the simulation results employed to evaluate the
proposed control strategy and to validate its stability properties for the partially-
coupled, underactuated floating vehicle dynamics.

7.1 Overview
We will focus on the generically tilted multirotor family, introduced in Section 5.1,
which all share the dynamic model described by (2.22). The control law implemented
on these vehicles is described in detail in Chapter 5. In particular, given the reference
control whrench composed by the reference control force fr (see (5.4)) and the
reference control moment τr (see (5.10)), it is processed by the wrench mapper,
defined in Section 5.3.3, which computes the reference control inputs ur to be sent
to the vehicle model.

By closing the loop—i.e., applying the reference control input ur to the open-loop
system (2.22)—the following closed-loop dynamics are obtained:

ṗ = v,

mv̇ = −mge3 + fr + X + P ⊥
⋆ RF1F †

2 τr,

Ṙ = RS(ω),
Jω̇ = −ω × Jω + τr,

(7.1)

where the term P ⊥
⋆ RF1F †

2 τr, already seen in (5.21), is referred to as the spurious
force.

It is essential to note that this closed-loop structure is common to all GTMs
within the family under consideration. At first glance, this might suggest that
the spurious force phenomenon affects all vehicles in the family. However, this is
not necessarily true: not all GTMs are subject to spurious force generation and,
even when present, depending on the actuation capabilities of the vehicle under
consideration, their effects may be negligible or completely mitigated. For example,
fully actuated GTMs1 are able to counterbalance the spurious force by appropriately
selecting the reference control force fr.

1These platforms correspond to those denoted as D3 in Definition (3.2). Achieving this configu-
ration requires n ≥ 6 propellers and rank(F ) = 6, i.e., the platform must be omnidirectional.
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Similarly, the so-called completely decoupled GTMs2 are not affected by the
presence of spurious force. In such cases, although spurious force is present, since
it resides in the subspace along which control authority is available, it is always
possible to select fr so as to completely compensate for its effects.

The most critical scenario occurs with partially coupled GTMs, in which there is
a spurious force that cannot be compensated by any choice of fr, since it is located in
the orthogonal subspace to that along which it is possible to generate thrust without
affecting the dynamics of the attitude. Consequently, the simulations presented in
this chapter focus on this type of vehicle.

We notice that the spurious force is absent from the closed-loop system if and
only if the product F1F †

2 is zero, which occurs precisely when all rows of F1 are
orthogonal to all rows of F2. In fact, it can be shown that

if F1F †
2 = 0, ⇒ rank(F ) = rank(F1) + rank(F2). (7.2)

This result stems from the fact that the orthogonality of the image spaces of F1 and
F2 implies that their intersection is trivial. Since the rows of F are obtained by
stacking those of F1 and F2, the image space of F is the sum of the image spaces
of F1 and F2. When the intersection of these spaces is trivial, this sum is direct,
which means that the dimension of the image space of F is given by the sum of the
dimensions of the image spaces of F1 and F2. In summary, when the rows of F1 and
F2 are linearly independent, the rank of F is equal to the sum of the ranks of F1
and F2.

It should be emphasized that the relation (7.2) provides only a necessary condition
for the absence of the spurious force. Conversely, if rank(F ) ̸= rank(F1) + rank(F2),
the product F1F †

2 is non-zero, and thus the spurious force should be present in the
closed-loop system. Since our focus is on partially-coupled GTMs, exploiting (7.2)
allows us to identify specific platforms within this family that are certainly affected
by the spurious force phenomenon. Notable examples include tilted quadrotors and
tilted pentarotors.

Consider, for instance, a tilted quadrotor, which is a GTM with n = 4 propellers
and rank(F ) = 4. Given that any platform in our family must satisfy (3.1), i.e.,
rank(F2) = 3, it follows that the tilted quadrotor is certainly subject to the spurious
force whenever rank(F1) ≥ 2. Similarly, for a tilted pentarotor (n = 5, rank(F ) = 5),
the same condition implies the presence of the spurious force when rank(F1) = 3.

In conclusion, the primary objective of this chapter was to conduct simulations on
partially-coupled GTMs, with a particular focus on identifying platforms within this
family that are unequivocally affected by the spurious force phenomenon. Through
the analysis presented above, we have established that the tilted quadrotor and the
tilted pentarotor are representative examples of such platforms. Consequently, the
simulations in the following sections will be carried out on a tilted quadrotor, as it
serves as a canonical case study for investigating the effects of the spurious force in
partially-coupled configurations.

2These platforms correspond to those indicated with FD in Definition (3.1). This scenario
occurs when the spurious force resides within the subspace along which thrust can be generated
without affecting the attitude dynamics. This definition also includes the D3 platforms mentioned
above.
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7.2 Simulation Environment
In this section, we present the vehicle used in the simulations and discuss the choices
made regarding the parameters of the control law.

In this study, we consider a tilted quadrotor configuration, characterized by the
following properties: rank(F1) ≥ 2, rank(F2) = 3, and rank(F ) = 4. To realize such
configuration, the tilt angles of the propellers are set as follows:

αi = (−1)i−135◦, βi = (−1)i−125◦, for i = 1, . . . , 4

This choice ensures that both the control force and moment input matrices have rank
3, while the overall control input matrix in (2.18) achieves full rank, i.e., rank(F ) = 4.
This choice of tilt angles is not the unique combination that satisfies this condition;
however, it is a suitable one that allows for the investigation of the control strategy’s
performance under the specified conditions.

In light of the above considerations, a star-shaped quadcopter configuration
(with ϕ = 0) is examined, as it possesses the structural properties of primary interest
for this study. This lends itself to an analysis of the effects of partial coupling and
spurious forces.

The quadcopter is equipped with four identical propellers, each characterized by
a thrust coefficient cf and a drag coefficient c+

τ , which are the same for all propellers.
Each individual propeller can provide a maximum thrust of 15 N. The diameter of
the platform is 1.05 m and the total mass is m = 3 kg. The inertia matrix is diagonal
and expressed in the fixed reference system FB. The parameters are summarized in
Table 7.1.

Table 7.1. Quadrotor parameters used in simulations.

Parameter Symbol Value

Mass m 3 kg
Inertia J diag(0.050, 0.052, 0.080) kg m2

Thrust coefficient cf 0.01 kg m
Drag coefficient c+

τ 0.002 kg m2

Arm length l 0.525 m

The arrangement of the four propellers is illustrated in Fig. 7.1, where each rotor
is positioned at the vertices of a square such that each vertex is at a distance l from
the center of the body-fixed reference frame FB. The figure also shows the spinning
axes of each propeller, tilted according to the angles αi and βi defined previously.

A CAD rendering of the prototype, created using Blender by adapting a 3D
model sourced from CGTrader3 is shown in Fig. 7.2.

With the parameters described above, the control input matrix takes the following

3A marketplace for 3D models for VR/AR and CG projects, and a community of professional
3D designers.
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Figure 7.1. Propeller configuration: positions at the vertices of a square with each vertex
at distance l from the center, and orientation of the tilted thrust axes.

Figure 7.2. CAD rendering of the tilted quadrotor prototype.

form:

F =



0.0042 −0.0052 −0.0042 0.0052
−0.0052 −0.0042 0.0052 0.0042
0.0074 0.0074 0.0074 0.0074

−0.0008 0.0029 0.0008 −0.0029
−0.0029 −0.0008 0.0029 0.0008
−0.0042 0.0042 −0.0042 0.0042


. (7.3)

The control strategy provided in this thesis is implemented in MATLAB-Simulink,
where the quadrotor dynamics are simulated with a sampling time of 0.002 s, corre-
sponding to a simulation frequency of 500 Hz.

To implement the control law introduced in Chapter 5, and in accordance with
the requirements of Proposition 4.2, it is necessary to select a unit vector b̂ ∈ ker(F2)
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Figure 7.3. (a): Colormap of the admissible range of c1 as a function of the gains kp and
kv. Each point in the (kp, kv) plane is assigned a color representing the width of the
interval in which c1 can be chosen; warmer colors indicate larger maximum values of c1.
(b): Maximum values of c1 with respect to kp for different fixed values of kv.

such that F1b̂ ̸= 0. Considering the structural characteristics of the quadrotor under
study, the following unit vector is:

b̂ = 1
2
[
1 1 1 1

]⊤
. (7.4)

Accordingly, the preferential direction associated with this choice, as defined in (4.9),
is given by:

d⋆ =
[
0 0 1

]⊤
= e3. (7.5)

This direction is expressed in the body-fixed frame FB and it can be interpreted as
the thrust direction of the quadrotor, which is aligned with the vertical axis of the
body frame.

The choice of gains requires the simultaneous satisfaction of conditions (6.8),
(6.9), (6.10), and (6.11). Collectively, these constraints delineate a feasible domain
in the gain parameter space, called the set of admissible gains, within which there
exist positive constants c1 and c2 such that all the required inequalities are satisfied.
Formally, this region is defined as

G :=
{
kp, kv, kR, kω > 0 | ∃ c1, c2 > 0 such that (6.8), (6.9), (6.10), and (6.11) hold

}
.

It is important to distinguish G from the region of attraction introduced in (6.14),
which characterizes the set of initial conditions for which closed-loop stability is
guaranteed. In contrast, the region of admissible gains G specifies the set of controller
parameters that ensure the existence of a Lyapunov function certifying stability.

The simultaneous satisfaction of the conditions (6.8), (6.9) and (6.10) individuates
two regions in the gain parameter space, which are shown in Fig.7.3 and in Fig.7.4.

The first region, illustrated in Fig. 7.3, is determined by condition (6.8) and
delineates the admissible values of c1 as a function of the gains kp and kv. The
second region, depicted in Fig. 7.4, is defined by conditions (6.9) and (6.10), and
characterizes the admissible values of c2 as a function of the gains kp, kv, and



7.2 Simulation Environment 57

0
10

100

200k
R

300

400

k!

25

kv

1
0 0

0.5

1

1.5

2

2.5

3

"
 =

 c
2,

m
ax

 -
 c

2,
m

in
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kR. A feasible selection of gains must reside within the intersection of these two
regions, thereby ensuring that all required conditions are satisfied simultaneously.
Accordingly, the following set of gains is adopted:

kp = 0.55, kv = 2.06, kR = 8.16, kω = 0.7 (7.6)

With this selection, the maximum admissible value for c1 is cmax
1 = 0.346885, while

the admissible interval for c2 is [cmin
2 , cmax

2 ] = [0.181705, 0.219184]. Now we just
need to choose the values of c1 and c2 from among those that are admissible to
satisfy the last condition expressed in (6.11).

It is important to note that the intersection of the admissible regions in the gain
parameter space, as determined above, is not necessarily the largest possible. In fact,
the region G could be enlarged by using tighter (less conservative) upper bounds
during the derivations in Chapter 6. The conservative choices made in the proofs,
in particular in the estimation of the various upper bounds, limit the size of the
admissible region. However, the gains selected in (7.6) are sufficient to guarantee
closed-loop stability in accordance with Proposition 6.1.

To make the simulations more realistic, the control vector u is routed through a
Brownian noise block before reaching the quadcopter model. This block implements
an Ornstein-Uhlenbeck process, sampled every 2 ms, with an exponential decay rate
s = 0.1. A noise amplitude of 0.2, combined with a frequency factor of 2, produces
a standard deviation at steady state of 0.89.

Furthermore, to ensure that no single propeller exceeds its maximum thrust
of 15 N, a saturation block has been incorporated into the Simulink model. This
mechanism simulates the physical limits of the actuators, preventing the control
signals from exceeding the permitted limits and thus preserving the stability of the
system and the integrity of the actuators during operation.
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7.3 Simulation Results
Numerical simulations are conducted to validate the proposed control strategy and
evaluate its performance in stabilizing the dynamics of a partially coupled and
underactuated floating vehicle.

We will perform stationary flight maneuvers, in which the vehicle is tasked
with maintaining a fixed spatial position and orientation, as formally defined in
Definition 4.4. We will perform these maneuvers while trying to diversify the initial
conditions of the quadcopter, both in translation and orientation.

The performance of the control strategy is evaluated by observing how the
position, velocity, angular velocity, attitude tracking errors, and other important
parameters change during the maneuver.

7.3.1 Standard Manoeuvre

The first scenario analyzed is a standard case, i.e., a maneuver in which the quadcopter
has to perform static hovering, starting from zero initial conditions. Specifically,
the quadcopter is initialized at the origin with zero velocity and an attitude aligned
with the inertial system. The simulation is performed for a total duration of 25 s.

The initial conditions are:

p(0) =
[
0 0 0

]⊤
, v(0) =

[
0 0 0

]⊤
,

R(0) = I3, ω(0) =
[
0 0 0

]⊤
.

The objective is to realize stitc hovering at a fixed position and orientation,
specified as

pr =
[
15 10 20

]⊤
, Rre1 =

[
1 0 0

]⊤
. (7.7)

The screenshots shown in Figure 7.5 were extracted from the simulation video of
the 3D CAD model of the quadcopter. They illustrate, at significant moments, the
evolution of the vehicle’s position and attitude during the transition phase to the
desired hovering position, providing a visual assessment of the system’s behavior
and its progressive convergence towards the reference configuration.

Fig. 7.6 shows the position components, which demonstrate that the quadcopter
successfully reaches the reference position pr and maintains it throughout the
simulation.

Figure 7.7 shows how the velocity and angular velocity components change over
time. Both sets of components are set to zero, as needed for static hovering.

As shown in Figure 7.8, the attitude evolution shows a correct alignment of
the quadcopter’s attitude with the desired orientation. In particular, it is evident
that the attitude error components eR and the attitude error function Ψ(R,Rd)
both converge to zero. It is important to note that the attitude error function is
always less than 1 during the entire simulation. This observation indicates that the
condition (6.7) described in Proposition (6.1) is satisfied.

Figure 7.9 shows the evolution of the control inputs over time during the entire
maneuver. The graph shows both the propeller spinning rates u and the correspond-
ing thrust generated by each rotor. It is important to note that, for the current
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Figure 7.5. Sequence of screenshots from the 3D CAD model of the quadrotor at four
distinct instants during the flight manoeuvre, to be read from left to right: (a) the
drone starts from the initial position (maximum distance from the reference), (b) the
drone is halfway and approaching pr, (c) the point of view changes and the drone is
almost at pr, (d) the drone has reached pr and is performing static hovering.
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Figure 7.6. Position of the quadrotor during the overall manoeuvre. It can be seen how
the position p converge to the reference position pr.

Velocity [m s!1]

0 5 10 15 20 25
0
1
2

v x

vx

0 5 10 15 20 25
0

1

2

v y

vy

0 5 10 15 20 25
time [s]

0
1
2
3

v z

vz

Angular velocity [rad s!1]

0 5 10 15 20 25
-1

-0.5

0

!
x

!x

0 5 10 15 20 25

0
0.5

1

!
y

!y

0 5 10 15 20 25
time [s]

-0.1
-0.05

0

!
z

!z

Figure 7.7. Time evolution of the quadrotor’s linear and angular velocity components
throughout the entire simulation, highlighting convergence. (a): Velocity components v,
(b): Angular velocity components ω.

maneuver, actuator saturation is not invoked; the control inputs remain well within
the saturation limits imposed during the entire simulation.

Finally, Figure 7.10 presents the time histories of the spurious force (panel (a))
and the desired angular velocity (panel (b)) during the manoeuvre. Notably, both
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Figure 7.8. Time evolution of the quadrotor’s attitude during the entire simulation. (a):
Attitude tracking error components eR, (b): Attitude error function Ψ(R,Rd).
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Figure 7.9. Temporal evolution of the control inputs during the whole simulation. (a):
Spinning rates u, (b): Thrusts Ti generated by each rotor. The control inputs remain
well within the imposed saturation limits throughout the entire simulation.

signals converge to zero and remain negligible, underscoring the effectiveness of the
control law in actively suppressing spurious forces that could otherwise compromise
the control objective. This effect is particularly evident in the evolution of the
desired angular velocity, which is consistently driven to zero, thereby preventing
excitation of the spurious force.

7.3.2 Complex Manoeuvre

In this section, we analyze a more complex maneuver designed to test the control
strategy by bringing some variables close to the stability limits established in
Proposition 6.1. The initial conditions for this maneuver are:

p(0) =
[
0 0 3

]⊤
, v(0) =

[
0 0 0

]⊤
,

R(0) = I3, ω(0) =
[
0 0 0

]⊤
.
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Figure 7.10. Spurious force and desired angular velocity evolution during the manoeuvre.
(a): Spurious force fs, (b): Desired angular velocity ωd. The convergence of both
signals to zero is indicative of the efficacy of the control law in mitigating the spurious
force effects.

The quadrotor is required to reach the following reference position and orientation:

pr =
[
50 50 3

]⊤
, Rre1 =

[
1 0 0

]⊤
. (7.8)

The manoeuvre involves static hovering in a position that is much farther away from
the drone’s initial position, while keeping an altitude that is the same as the drone’s
initial altitude. The simulation is run for 30s.

The screenshots shown in Figure 7.11 were extracted from the simulation video
of the 3D CAD model of the quadcopter, in which it is possible to observe the salient
moments of the entire manoeuvre and the pose of the quadcopter itself.

Figure 7.12 illustrates the evolution of the position components during the
complex manoeuvre. The quadrotor is able to reach the reference position pr and
maintain it for the remainder of the simulation, despite the increased difficulty of
the task.

The time histories of the linear and angular velocity components are shown in
Figure 7.13. Both sets of variables converge to zero, as required for static hovering
at the target location.

Figure 7.14 shows the evolution of the components of the attitude tracking error
eR and the attitude error function Ψ(R,Rd). Both quantities converge to zero as the
maneuver progresses. In particular, the error function Ψ remains below 1 throughout
the simulation, thus satisfying the stability condition, but reaches relatively high
values at the beginning of the maneuver. This initial peak reflects the significant
discrepancy between the initial and desired attitude of the quadcopter, as the vehicle
must tilt significantly to generate the horizontal thrust necessary to move quickly
toward the target position.

Figure 7.15 presents the control inputs over time. In this more challenging
scenario, the inputs remain at the saturation limits for a significant portion of the
manoeuvre, reflecting the increased effort required from the actuators. Nevertheless,
the controller is still able to achieve the desired objective.

Figure 7.16 shows the projection of the reference control force fr onto the heading
direction Rre1 during the complex maneuver. Initially, this projection reaches a
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Figure 7.11. Sequence of screenshots from the 3D CAD model of the quadrotor at six
distinct instants during the complex manoeuvre. The images should be read from left to
right. (a): The quadrotor starts from p(0). (b): The quadrotor tilts significantly as it
accelerates towards pr. (c): The quadrotor is approaching pr. (d): Camera changes; the
quadrotor has almost reached pr, and its tilt indicates it is braking. (e): The quadrotor
overshoots pr. (f): The quadrotor finally reaches pr and performs static hovering.
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Figure 7.12. Quadrotor position throughout the complex manoeuvre. The position p
converges to the reference pr.

value close to 0.6, reflecting the substantial tilt required by the quadcopter to
generate the horizontal thrust necessary for rapid acceleration towards the target
position. As the vehicle approaches the reference point, the projection decreases and
eventually becomes negative (approximately −0.2), indicating that the quadcopter
must reorient itself to produce a braking force, thus enabling precise and stable
hovering in the final position.

Finally, Figure 7.17 illustrates the evolution of the spurious force and the desired
angular velocity during the maneuver. In this complex scenario, the spurious force
fA reaches higher values than in the previous case, particularly at the beginning,
due to the larger initial deviation between R(0) and Rd(0). Nevertheless, the control
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Figure 7.13. Time evolution of the quadrotor’s linear and angular velocities during the
complex manoeuvre. (a): Linear velocity v, (b): Angular velocity ω.
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Figure 7.14. Attitude tracking performance during the complex manoeuvre. (a): Attitude
error components eR, (b): Attitude error function Ψ(R,Rd). The error function remains
below one, satisfying the stability condition; however, in this more challenging scenario,
Ψ reaches high values, approaching the stability guarantee limits.

strategy effectively regulates the spurious force to zero as the maneuver progresses.
Similarly, the desired angular velocity ωd is effectively brought to zero, confirming
the effectiveness of the proposed approach.

7.3.3 Reorienting Manoeuvre

In this section, we analyze a reorientation maneuver in which the quadcopter must
restore its attitude to maintain a fixed position. The initial conditions are:

p(0) =
[
0 0 0

]⊤
, R(0) =

1 0 0
0 0.01745 −0.99985
0 0.99985 0.01745

 ,
v(0) =

[
0 0 0

]⊤
, ω(0) =

[
0 0 0

]⊤
,

where R(0) corresponds to a rotation of 89◦ about the xB-axis. The quadrotor
is commanded to hover at the same position, with the desired heading direction
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Figure 7.15. Control input evolution during the complex manoeuvre. (a): Spinning
rates u, (b): Individual rotor thrusts Ti. In this more challenging scenario, the inputs
remain at the saturation limits for a significant portion of the manoeuvre, reflecting the
increased effort required from the actuators.
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Rre1 =
[
1 0 0

]⊤
.

This configuration causes the initial direction of thrust, R(0)d⋆, to be almost
orthogonal to the direction of the reference control force, Rdd⋆, required for stationary
flight. As a result, the quadcopter must perform a significant reorientation to align
its thrust with the desired direction while maintaining its position unchanged. The
simulation lasts 15 s.

The screenshots in Figure 7.18 illustrate the evolution of the reorientation
maneuver performed by the quadcopter. It begins with a strong misalignment of
the attitude and gradually reorients itself to align the direction of thrust with the
direction of the desired force.

Figure 7.19 shows the evolution of the quadcopter’s position during the maneuver.
The results indicate that, due to the strong initial misalignment of the attitude, the
quadcopter temporarily deviates from the reference position. However, once the
desired attitude is achieved, the controller recovers the position error and guides it
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Figure 7.17. Evolution of spurious force and desired angular velocity during the complex
manoeuvre. (a): Spurious force fA, (b): Desired angular velocity ωd. Both quantities
are effectively regulated to zero.

Figure 7.18. Sequence of screenshots from the 3D CAD model of the quadrotor during the
reorienting manoeuvre, to be read from left to right: (a) The quadrotor starts with an
unfavorable orientation at pref (the desired static hovering point); (b) The quadrotor,
unable to counteract the initial orientation, leaves pref ; (c) The quadrotor has reoriented
itself favorably and begins to recover the gap to pref ; (d) The quadrotor has reached
pref and performs static hovering.
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Figure 7.19. Position of the quadrotor during the reorienting manoeuvre. The position p

converges to the reference pr =
[
0 0 0

]⊤.

to the reference point.
Figure 7.20 presents the velocity and angular velocity components. The angular
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Figure 7.20. Time evolution of the quadrotor’s linear and angular velocity components
during the reorienting manoeuvre. (a): Velocity components v, (b): Angular velocity
components ω.
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Figure 7.21. Time evolution of the quadrotor’s attitude during the reorienting manoeuvre.
(a): Attitude tracking error components eR, (b): Attitude error function Ψ(R,Rd).

velocity, especially ωx, exhibits significant oscillations during the reorientation phase,
reflecting the large initial attitude error.

Figure 7.21 shows the evolution of the quadrotor’s attitude. Both the attitude
error components eR and the attitude error function Ψ(R,Rd) converge to zero,
demonstrating that the quadrotor achieves the desired orientation. This manoeuvre
is designed to drive the attitude error function close to its maximum permissible
value, as defined by condition (6.7) in Proposition 6.1. The large initial attitude (89◦

about xB-axis) results in an initial attitude error function value of approximately
0.985.

Figure 7.22 displays the control inputs during the manoeuvre, namely, the
spinning rates u for each rotor and the corresponding thrusts Ti. The control inputs
remain within actuator saturation limits, except for rotors 2 and 3, which are initially
switched off.

Figure 7.10 illustrates the evolution of the spurious force (panel (a)) and the
desired angular velocity (panel (b)). Initially, the spurious force fA is large due to
the significant attitude error. As the manoeuvre progresses, both the spurious force
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Figure 7.22. Time evolution of the control inputs during the reorienting manoeuvre. (a):
Spinning rates u, (b): Thrusts Ti generated by each rotor. The control inputs are well
within the saturation limits, except for rotors 2 and 3, which are initially switched off.
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Figure 7.23. Spurious force and desired angular velocity evolution during the manoeuvre.
(a): Spurious force fA, (b): Desired angular velocity ωd. Both signals converge to zero,
indicating the efficacy of the control law in mitigating spurious force effects even with
large initial attitude misalignment.

and the desired angular velocity decrease and converge to zero, demonstrating the
control law’s ability to compensate for spurious force effects even under substantial
initial misalignment.

During this reorientation maneuver, we saw how the quadcopter successfully
aligns the direction of thrust with the desired direction of force, even in the presence
of significant initial attitude misalignment. Proposition 6.1 guarantees the local ex-
ponential stability of the closed-loop system for attitudes that satisfy condition (6.7),
and that it is respected throughout the maneuver. Although it is possible to reorient
the quadcopter from a high initial attitude error, in such cases convergence is not
guaranteed by proposition 6.1. The simulation results validate the stability properties
of the control law and its ability to effectively handle reorientation maneuvers.
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Chapter 8

Conclusion

8.1 Summary of Contributions
The ability to achieve static hovering is a fundamental requirement for multirotor
aerial vehicles, as it ensures the capability to maintain a fixed position and orientation
in space—an essential prerequisite for safe operation in cluttered or sensitive environ-
ments. This requirement becomes even more critical for fully-actuated generically
tilted multirotors, which, following the failure of one or more rotors, may transition
into a partially coupled configuration. When full actuation is lost, the craft’s control
authority drops so sharply that maintaining a steady hover can appear impossible;
without that ability, the odds of an uncontrolled fall or collision rise steeply. It
is therefore vital to understand—and be able to guarantee—static hovering under
partial actuation, especially when a rotor fails, to keep these advanced aerial systems
reliable and safe.

In this context, the geometric control law of Michieletto et al. in [26] offers
a promising solution. This control law is designed to stabilize the platform in
static hovering, even when it is partially coupled due to rotor failures. Although
that control law had already been validated extensively in both simulation and
real-world experiments—conducted in the Laboratory for Analysis and Architecture
of Systems (LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France)—the
task of providing a formal stability proof was explicitly left as future work. With
this thesis, we have aimed to address this gap by offering a plausible and formal
proof of local exponential stability, while acknowledging that further refinements
and extensions may still be possible.

We began by identifying the mathematical model describing the dynamics of a
generic GTM in a coordinate-free framework based on the Lie group SE(3). The
model was then parameterized using three sets of parameters: (αi, βi) to generalize
the tilt of the spinning axis of the i-th propeller, and λi to generalize the position
of the i-th propeller on the xB, yB plane, thus allowing the possibility to place the
propellers in configurations far more general and complex than simply positioning
them at the vertices of a regular polygon [34, 27, 22, 42].

This coordinate-free formulation enabled the representation of the entire family
of such platforms and allowed for a systematic study of their actuation capabilities
through the analysis of the rank of the control input matrices F1 and F2. This made
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it possible to classify these platforms according to their actuation capabilities, in
particular identifying which platforms are partially coupled [27].

Subsequently, we formally introduced the concept of static hovering, defined
as the capability of a platform to maintain constant position and orientation in a
stable manner. The conditions for a platform to be static hoverable were established
in terms of its ability to generate arbitrary control moments and to independently
modulate the thrust magnitude along a designated direction. Specifically, these
conditions were derived by analyzing the kernel of the control moment input matrix
F2 and the image of the control force input matrix F1, thereby providing a systematic
criterion to determine whether a given GTM configuration admits static hovering
[27, 26].

Then, by considering all the static hoverable platforms within the family of
GTMs, we discussed and thoroughly analyzed the control law proposed in [26] that
enables the platform to achieve static hovering. Since a formal stability proof was a
missing piece in the existing literature, this work humbly attempts to address that
gap. In particular, the proof was carried out based on the search for a candidate
Lyapunov function that satisfies the conditions for exponential stability theorem.
This was achieved by finding an expression for the desired angular velocity that
depends linearly on the closed-loop tracking error dynamics.

Finally, we validated the theoretical results through numerical simulations in
Matlab-Simulink, demonstrating the platform’s ability to perform hovering, reorien-
tation, and aggressive maneuvers, with simulation outcomes closely matching the
predicted behavior.

8.2 Future Works
This study paves the way for several further investigations:

i. Maximizing the region of admissible gains: The stability analysis identifies
a set of conditions ((6.8), (6.9), (6.10) and (6.11)) whose satisfaction ensures
local exponential stability of the closed-loop system. These constraints define a
region in the gain space, i.e., combinations of (kp, kv, kR, kω) for which suitable
c1 and c2 exist to guarantee stability. This region (denoted as G), is almost
certainly smaller than the true stability region, i.e., there may be additional
gain combinations that also ensure stability but are excluded by the current,
somewhat conservative, analysis. To address this, one could to revisit the proof
with looser assumptions and push the range of allowable gains further out.
One way forward is to replace the three separate positivity tests on W1, W2
and the extra bound in (6.11) with a single check. Form the block matrix

M :=
[

W1 −1
2W̃

−1
2W̃ ⊤ W2

]

then apply the Schur-complement criterion and ask only that M be positive def-
inite. Such improvements would enlarge the set of admissible gains, potentially
enhancing both the performance and robustness of the control law.
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ii. Automatic tuning of c1 and c2: After selecting the main gains so that they
fall within the admissible region, it is still necessary to determine appropriate
values for the parameters c1 and c2. These parameters must be chosen in such
a way that the final stability condition (6.11) is satisfied. A sensible route is to
pose the task as a constrained nonlinear optimisation, turning the leftover term
in the stability inequality into the objective to be minimised and enforcing the
limits in (6.8), (6.9) and (6.10) as hard constraints. Any set returned by the
solver is therefore both legal and as close as possible to satisfying the stability
requirement.
A different route relies on data-driven search. By training a neural network to
roam the (c1, c2) plane and flag every pair that clears the stability tests, one can
sift through the admissible region much faster than with classical solvers. The
advantage becomes clear when the space is wide or the link between the gains
and the inequalities is strongly nonlinear, cases that often bog down traditional
optimisation.

iii. Exploiting actuation redundancy: The control law could be further im-
proved by leveraging the actuation redundancies offered by the platform. In
particular, during the implementation of the reference control moment Mr, it
is possible to use the kernel of the matrix F1. In this context, it is possible to
select the reference control moment entirely within ker(F1), thus ensuring the
absence of spurious forces. However, this is not always feasible—such as in the
case of tilted quadrotors or tilted pentarotors with a rank of F1 less than or
equal to two—where the kernel may be trivial or insufficiently large.
Additionally, the implementation of the reference control force fr could be
enhanced by fully utilizing the platform’s translational actuation capabilities.
For example, consider a platform that does not possess a single preferential
direction, but rather a preferential plane (case D2, where dim(FB) = 2). In
this situation, it is possible to select two vectors b̂1 and b̂2 in the kernel of F2
such that F1b̂i ̸= 0 for i = 1, 2. This would require determining two coefficients
to implement the control force uf , thereby generalizing the approach from the
one-dimensional case discussed in this thesis to a two-dimensional scenario.
Extending all the steps and analyses presented here to accommodate such
multidimensional cases would represent a significant and valuable generalization.

iv. Applications to underwater and space vehicles: The same control archi-
tecture could be adapted to autonomous underwater vehicles or microsatellites
sharing the same actuation capabilities, where partial force–moment coupling
also occurs.

In summary, this thesis has focused on the control law for partially coupled aerial
platforms, providing a demonstration of its stability properties, an aspect not yet
present in the scientific literature. In conclusion, concrete suggestions for further
extensions and optimizations are provided.
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Appendix A

Properties of the Skew Map

The skew map S : R3 → so(3) is a linear operator that associates a vector v =
[v1, v2, v3]⊤ ∈ R3 with a 3 × 3 skew-symmetric matrix as follows:

S(v) =

 0 −v3 v2
v3 0 −v1

−v2 v1 0

 . (A.1)

This mapping establishes an isomorphism between the vector space R3 and the Lie
algebra so(3), leveraging the properties of the vector cross product. Specifically, for
any w ∈ R3, the following holds:

S(v)w = v × w.

The inverse mapping, denoted S−1 : so(3) → R3, retrieves the vector from its
skew-symmetric matrix representation.

Key properties of the skew map include:

S(v + w) = S(v) + S(w) (A.2)
S(v)w = v × w = −w × v = −S(w)v (A.3)

−1
2 Tr

[
S(v)S(w)

]
= v⊤w (A.4)

Tr
[
S(v)A

]
= Tr

[
AS(v)

]
= 1

2 Tr
[
S(v)(A − A⊤)

]
= −v⊤S−1(A − A⊤) (A.5)

S(v)A + A⊤S(v) = S
(
(Tr[A]I3 − A)v

)
(A.6)

RS(v)R⊤ = S(Rv) (A.7)
S(x)x = 0 (A.8)

for all v,w ∈ R3, A ∈ R3×3, and R ∈ SO(3).
For a comprehensive treatment of the skew map and its applications, refer to

standard texts such as [23], [37], or [29].
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Appendix B

Stability Theory

In this appendix, we provide a brief overview of the stability theory for nonlinear
systems. These concepts are fundamental tools used to derive stability properties
of the control laws proposed in this thesis. The interested reader should consult
a standard text, such as [20] or [29]. Alternatively, the reader can refer to course
materials about stability theory for nonlinear systems, such as [18, 17] or [30] for a
more detailed treatment of the subject.

Consider a nonlinear system described by the ordinary differential equation
(ODE)

ẋ = f(x), x(t0) = x0, (B.1)

in which x ∈ Rn is the state of the system, f : Rn → Rn is Lipschitz continuous
w.r.t. x.

The set of equilibria E ⊂ Rn of the system is defined as the set of points where
f(x) = 0. An equilibrium point xe is considered locally stable if all solutions
starting near xe (within a neighborhood Iδ(xe) of radius δ around xe) remain close
to xe for all time. On the other hand, an equilibrium point xe is said to be locally
asymptotically stable if it is locally stable and all solutions starting near xe converge
to xe as t → ∞. It is important to note that a nonlinear system can have finite
or infinite equilibrium points, and their stability analysis needs to be performed
separately for each of them.

Definition B.1 (Stability in the sense of Lyapunov). The equilibrium point xe of
(B.1) is said to be stable (in the sense of Lyapunov) at t = t0 if, for every ε > 0,
there exists a δ(ε) > 0 such that for all x0 ∈ Iδ(xe), the solution x(t) of the system
satisfies

∥x(t) − xe∥ < ε, ∀t ≥ t0. (B.2)

The concept of asymptotic stability can be formally defined as follows

Definition B.2 (Asymptotic Stability). An equilibrium point xe of (B.1) is said to
be asymptotically stable if it is stable and there exists a δ(ε) > 0 such that for all
x0 ∈ Iδ(xe), the solution x(t) of the system satisfies

lim
t→∞

∥x(t) − xe∥ = 0. (B.3)
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Finally, we say that an equilibrium point is unstable if it is not stable. Definitions
B.1 and B.2 are local definitions; they describe the behavior of the system in a
neighborhood of the equilibrium point. In general, if we want to study the global
stability of the system, we need to consider the behavior of the system in the
entire state space. We say that a system is globally asymptotically stable if it is
asymptotically stable for all initial conditions in the state space. Notice that a
necessary condition for an xe to be globally asymptotically stable is that it is the
only equilibrium point.

Moreover, the definition of asymptotic stability do not quantify the rate at
which the solutions converge to the equilibrium point. There is a stronger notion of
stability, called exponential stability, which requires that the solutions converge to
the equilibrium point exponentially fast.

Definition B.3 (Exponential Stability and rate of convergence). An equilibrium
point xe of (B.1) is said to be exponentially stable if there exist constants M,β > 0
such that for all x0 ∈ Iδ(xe), the solution x(t) of the system satisfies

∥x(t) − xe∥ ≤ Me−β(t−t0)∥x0 − xe∥, ∀t ≥ t0. (B.4)

The constant β is called the rate of convergence of the system.

Exponential stability is a strong form of stability; in particular, it implies
asymptotic stability, but the converse is not true.

The stability, or asymptotic stability, properties of the equilibrium xe of this
system can be rigorously tested using the well-known criterion of Lyapunov. This
criterion allows us to determine the stability of a system without explicitly integrat-
ing the differential equations (B.1). The Lyapunov’s direct method is a powerful
generalization of the idea that if there exists a "measure of energy" in a system, we
can study the rate of change of the energy to ascertain stability. Furthermore, this
method leverages the concept of comparison functions, which are precisely defined
in the following definition.

Definition B.4 (Comparison Functions). A continuous function α : [0, a) → [0,+∞)
is said to be in the class K if it is a continuous strictly increasing function and
α(0) = 0. Moreover, if a = +∞ and limr→+∞ α(r) = +∞, then α is said to be in
the class K∞.

To define exactly what one means by a “measure of energy" in a system, we
introduce the concept of Lyapunov functions. Let Iδ(xe) be an open ball of radius δ
centered at xe defined as

Iδ(xe) := {x ∈ Rn : ∥x − xe∥ < δ}

Definition B.5 (Positive Definite Function). Consider a scalar function V : Rn → R,
continuously differentiable w.r.t. x ∈ Iδ(xe) (i.e., V ∈ C1(Iδ)), and a class K
function α1 : [0, a) → [0,+∞). We say that V (x) is locally positive definite if

V (x) ≥ α1(∥x∥), ∀x ∈ Iδ. (B.5)

Moreover, if additionally α1(·) is a class K∞ function, then V (x) is said to be
positive definite.
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To bound the energy function from above, we define decrescence as follows

Definition B.6 (Decrescent Function). Consider a scalar function V : Rn → R,
continuously differentiable w.r.t. x ∈ Iδ(xe) (i.e., V ∈ C1(Iδ)), and a class K
function α2 : [0, a) → [0,+∞). We say that V (x) is decrescent if

V (x) ≤ α2(∥x∥), ∀x ∈ Iδ. (B.6)

These definitions are crucial for the following theorem, which is the cornerstone
of the Lyapunov stability theory. Roughly speaking, the theorem states that if
there exists a Lyapunov function V (x) that is locally positive definite and its time
derivative along the trajectories of the system is a decrescent function, we can assert
the stability of the equilibrium point xe. The time derivative of V (x) along the
trajectories of the system is defined as

V̇ (x) = d

dt
V (x(t)) =

n∑
i=1

∂V

∂xi
ẋi = ∂V

∂x
f(x),

where ∂V
∂x =

[
∂V
∂x1

, . . . , ∂V∂xn

]
is the gradient of V (x).

Theorem B.1 (Direct Method of Lyapunov). Consider the system (B.1) and an
equilibrium point xe. Let V : Iδ(xe) → R be a continuously differentiable function
such that, for some class K function α1(·) and α2(·) defined on [0, d), with d > 0,
satisfies

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), ∀x ∈ Iδ(xe). (B.7)

If

∂V

∂x
f(x) ≤ 0, ∀x ∈ Iδ(xe), (B.8)

then the equilibrium point xe is stable. If, for some class K function α3(·), defined
on [0, d), with d > 0, we have

∂V

∂x
f(x) ≤ −α3(∥x∥), ∀x ∈ Iδ(xe), (B.9)

then the equilibrium point xe is locally asymptotically stable. Moreover, if the
functions α1(·), α2(·), and α3(·) are class K∞ function, then the equilibrium point
xe is globally asymptotically stable.

Theorem B.1 provides sufficient conditions for the stability of the equilibrium
point xe of the system (B.1). However, it does not offer criteria for determining
the existence of a Lyapunov function V (x) that establishes the stability of the
equilibrium point. The search for such a Lyapunov function could be arduous.
However, it is a remarkable fact that the converse of Theorem B.1 holds: if an
equilibrium point is stable, then there exists a Lyapunov function that satisfies the
conditions of the theorem.

Moreover, Theorem B.1 also stops short of giving explicit rates of convergence
of solutions to the equilibrium. If the equilibrium xe of system (B.1) is globally
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asymptotically stable and, moreover, satisfies the condition (B.4) it is said that the
equilibrium point xe is globally asymptotically stable and also locally exponentially
stable. In this context, the following criterion is useful to determine the exponential
stability of the equilibrium point xe.

Theorem B.2 (Exponential Stability Theorem). Consider the system (B.1) and an
equilibrium point xe. It is globally asymptotically stable and locally exponentially
stable if and only if there exists a continuously differentiable function V : Iδ(xe) → R,
with δ > 0, three class K∞ functions α1(·), α2(·), and α3(·) defined on [0, d), with
d > 0, and two real numbers a1, a3 > 0 such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), ∀x ∈ Iδ(xe), (B.10)

∂V

∂x
f(x) ≤ −α3(∥x∥), ∀x ∈ Iδ(xe), (B.11)

and

α1(∥x∥) = a1∥x∥2, α3(∥x∥) = a3∥x∥2, ∀x ∈ Iδ(xe). (B.12)

Another important concept exploited during the stability analysis of nonlinear
controller is the concept of exponential attractiveness here defined.

Definition B.7 (Exponential Attractiveness). Consider the system (B.1) and an
equilibrium point xe. It is said to be exponentially attractive if there exist constants
δ,M, β > 0 such that for all x0 ∈ Iδ(xe), the solution x(t) of the system satisfies

∥x(t) − xe∥ ≤ Me−β(t−t0), ∀t ≥ t0. (B.13)

It is important to notice that the concept of exponential attractiveness is weaker
than the concept of exponential stability, in which the above inequality is replaced
by ∥x(t) − xe∥ ≤ Me−β(t−t0)∥x0 − xe∥.
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Appendix C

Attitude Tracking Errors

In this appendix, we present several results of the attitude tracking errors, which
are essential for the stability analysis of the hierarchical control law presented in
Section 5.3. In particular, we derive the time derivative of the attitude error function
Ψ(R,Rd), as defined in (5.8), and the time derivative of the attitude tracking error
vector eR from (5.9). These results are crucial for understanding the dynamics of
the attitude tracking errors and their implications for stability. Finally, we show
how the attitude error function Ψ(R,Rd) is related to the attitude tracking error
vector eR and how to derive the angular velocity tracking error vector eω. The
computations presented in this appendix are based on the work of Lee et al. [22]
and are adapted to our specific context.

C.1 Time Derivative of the Attitude Error Function
Recall the attitude kinematics from (2.2). The time derivative of the attitude error
function is computed as follows:

Ψ̇(R,Rd) = 1
2Tr

[
−Ṙ⊤

d R − R⊤
d Ṙ

]
= −1

2Tr
[
−S(ωd)R⊤

d R + R⊤
d RS(ω)

]
= −1

2Tr
[
R⊤
d R

(
−R⊤RdS(ωd)R⊤

d R + S(ω)
)]
.

By applying properties (A.2) and (A.7) of the skew-symmetric operator, this
expression simplifies to

Ψ̇(R,Rd) = −1
2Tr

[
R⊤
d RS(ω − R⊤Rdωd)

]
= −1

2Tr
[
R⊤
d RS(eω)

]
= 1

2e⊤
ωS−1

(
R⊤
d R − R⊤Rd

)
= e⊤

ω eR,

where we have used the definitions of the attitude tracking errors eR and eω from
(5.9) and (C.7), as well as property (A.5) of the skew-symmetric map.
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In summary, the time derivative of the attitude error function is given by

Ψ̇(R,Rd) = ⟨eω, eR⟩. (C.1)

C.2 Time Derivative of the Attitude Tracking Error
Next, we derive the time derivative of the attitude tracking error vector eR as defined
in (5.9). Using the identity d

dt(R
⊤
d R) = R⊤

d RS(eω), we obtain

ėR = 1
2
d

dt
S−1

(
R⊤
d R − R⊤Rd

)
= 1

2S−1
(
d

dt
(R⊤

d R) −
(
d

dt
(R⊤

d R)
)⊤
)

= 1
2S−1

(
R⊤
d RS(eω) + S(eω)R⊤Rd

)
.

Applying property (A.6) of the skew-symmetric operator, we further simplify

ėR = 1
2S−1

(
S
(
(Tr[R⊤Rd]I − R⊤Rd)eω

))
= 1

2
(
Tr[R⊤Rd]I − R⊤Rd

)
eω.

Defining the matrix

C(R⊤
d R) := 1

2
(
Tr[R⊤Rd]I − R⊤Rd

)
, (C.2)

we conclude that

ėR = C(R⊤
d R)eω. (C.3)

We now show that the Euclidean norm of this matrix is less than or equal to
one, i.e., ∥C(R⊤

d R)∥2 ≤ 1 for any R⊤
d R ∈ SO(3). This property is crucial for the

stability analysis, as it ensures that the attitude tracking error grows at most linearly
with respect to the angular velocity error eω.

To establish this bound, we analyze the spectral properties of C⊤C. Specifically,
we seek its maximum eigenvalue. For this purpose, it is convenient to represent the
matrix C(R⊤

d R) using the Rodrigues formula

C
(
eS(x)) = 1

2
(
Tr
[(
eS(x))⊤]I3 −

(
eS(x))⊤),

where x ∈ R3 is such that R⊤
d R = eS⊤(x). The matrix C

(
eS(x)) can be further

analyzed using the Rodrigues rotation formula

eS(x) = x̂x̂⊤ +
(
I3 − x̂x̂⊤

)
cos(∥x∥) + S(x̂) sin(∥x∥),

where x̂ = x/∥x∥ for x ̸= 0. Noting that the trace of a rotation matrix is
1 + 2 cos(∥x∥), we obtain

C
(
eS(x)) = 1

2
(
2 cos(∥x∥)I3 + sin(∥x∥)S(x̂) − (1 − cos(∥x∥))S2(x̂)

)
.
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Therefore, the matrix C⊤(R⊤
d R)C(R⊤

d R) can be expressed as

C⊤(R⊤
d R)C(R⊤

d R) = cos2(∥x∥)I3 −
(1
2 + 1

2 cos(∥x∥) − cos2(∥x∥)
)
S2(x̂).

The eigenvalues of this matrix are given by

λ1 = cos2(∥x∥), λ2,3 = 1
2 + 1

2 cos(∥x∥).

In conclusion, we derive the bound for the Euclidean norm of the matrix C(R⊤
d R)

as follows

∥C(R⊤
d R)∥2 =

√
λmax

(
C⊤(R⊤

d R)C(R⊤
d R)

)
≤ 1, ∀R⊤

d R ∈ SO(3). (C.4)

C.3 Relation Between the Attitude Error Function and
the Attitude Tracking Error

Finally, we show that the attitude error function Ψ(R,Rd) is related to the attitude
tracking error vector eR. In particular, starting from the definition of the attitude
error function in (5.8), and writing R⊤

d R = eS(x), for x ∈ R3, we get

Ψ(R,Rd) = 1
2
(
3 − 1 − 2 cos(∥x∥)

)
= 1 − cos(∥x∥). (C.5)

Using the latter expression, we have derived the following relation

0 ≤ Ψ(R,Rd) = 1 − cos(∥x∥) ≤ 2, ∀R⊤
d R ∈ SO(3).

Let us now relate the attitude error function Ψ(R,Rd) to the attitude tracking
error vector eR. To this end, we compute the square of the Euclidean norm of the
attitude tracking error vector eR as follows

∥eR∥2 = 1
4S−⊤(R⊤

d R − R⊤Rd

)
S−1(R⊤

d R − R⊤Rd

)
.

Writing the rotation matrix R⊤
d R as eS(x), we get

R⊤
d R − R⊤Rd = eS(x) −

(
eS(x))⊤ = 2 sin(∥x∥)S(x̂).

Thus, we can express the square of the Euclidean norm of the attitude tracking error
vector as

∥eR∥2 = 1
44 sin2(∥x∥) = sin2(∥x∥).

Using the relation in (C.5), we can express ∥eR∥2 in terms of the attitude error
function as follows

∥eR∥2 = sin2(∥x∥) = 1 − cos2(∥x∥) = (1 + cos(∥x∥))(1 − cos(∥x∥))
= (1 + cos(∥x∥))Ψ(R,Rd) = (2 − Ψ(R,Rd))Ψ(R,Rd). (C.6)
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C.4 Angular Velocity Tracking Error
For completeness, we also derive the expression for the angular velocity tracking
error eω as defined in (C.7).

It is essential to account for the difference between the desired angular velocity
and the actual angular velocity. This difference is captured by the angular velocity
tracking error eω. To define this error, we have to compare Ṙ ∈ TRSO(3) with
Ṙd ∈ TRd

SO(3). Since they belong to different tangent spaces, we cannot directly
compare them. However, we can map (Rd, Ṙd) ∈ SO(3) × TRd

SO(3) to the
tangent boundle SO(3) × TRSO(3) by the right-translation map RR⊤

d
R : SO(3) ×

TRd
SO(3) → SO(3) × TRSO(3), which is defined as

(Rd, Ṙd)
R

R⊤
d

R

−−−−→ (R, Ṙ).

Once Ṙd is transformed into a vector in TRSO(3), we can compare it with Ṙ as
follows

Ṙ − Ṙd(R⊤
d R) = RS(ω) − RdS(ωd)R⊤

d R

= R
(
S(ω) − R⊤RdS(ωd)R⊤

d R
)

= RS(eω),

where in the last equality we have exploited two properties of the S(·) map1. The
quantity eω is the angular velocity tracking error and it is defined as

eω = ω − R⊤Rdωd. (C.7)

We can show that the angular velocity tracking error eω is the angular velocity
related to the rotation matrix R⊤

d R, represented in the body-fixed reference frame,
since

d

dt
(R⊤

d R) = Ṙ⊤
d R + R⊤

d Ṙ = (RdS(ωd))⊤R + R⊤
d RS(ω) =

R⊤
d RS(ω) − S(ωd)R⊤

d R = R⊤
d RS(eω).

1Properties (A.2) and (A.8). For more details see Appendix A



81

Appendix D

Desired Angular Velocity

In this appendix, we derive an explicit expression for the desired angular velocity
ωd as a function of the tracking errors: attitude error eR, angular velocity error eω,
position error ep, and velocity v.

The desired angular velocity ωd arises from the time variation of the reference
rotation matrix Rd, defined in (5.6). Differentiating Rd with respect to time yields
a skew-symmetric matrix, from which ωd can be extracted:

Ṙd = RdS(ωd) =⇒ ωd = S−1(R⊤
d Ṙd).

Assuming Rb is constant, the time derivative of Rd = RwRb simplifies to

Ṙd = ṘwRb.

Substituting into the previous expression gives

ωd = S−1(R⊤
b R⊤

wṘwRb). (D.1)

Let ωw denote the angular velocity associated with Rw, expressed in the inertial
frame FW . By definition,

Ṙw = S(ωw)Rw. (D.2)

Substituting (D.2) into (D.1) yields

ωd = S−1(R⊤
b R⊤

wS(ωw)RwRb) = S−1(R⊤
d S(ωw)Rd) = R⊤

d ωw,

where the last equality uses the identity S−1(R⊤S(x)R) = R⊤x for any rotation
matrix R and vector x.

To compute ωd, we need an explicit expression for ωw in terms of the columns
of Rw and their derivatives. Let

Rw =
[
w1 w2 w3

]
,

where w3 = f̂r is the unit vector along the desired control force, and w1, w2 complete
the orthonormal frame with a given unit vector r̂1. Specifically,

w2 = w3 × r̂1
∥w3 × r̂1∥

, w1 = w2 × w3.
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The time derivative of Rw is

Ṙw =
[
ẇ1 ẇ2 ẇ3

]
,

with

ẇ3 = ˙̂
fr,

ẇ2 = 1
∥w3 × r̂1∥

[
I3 − w2w⊤

2

]
(ẇ3 × r̂1) ,

ẇ1 = ẇ2 × w3 + w2 × ẇ3,

assuming r̂1 is constant. Here, we have used the time derivative of a unit vector k̂:

˙̂
k = 1

∥k∥

[
I3 − k̂k̂⊤

]
k̇.

Each unit vector wi in Rw satisfies

ẇi = ωw × wi, i = 1, 2, 3. (D.3)

For i = 3,

ẇ3 = ωw × w3.

Premultiplying by w3× and applying the vector triple product identity,

w3 × ẇ3 = ωw − (w⊤
3 ωw)w3.

Thus, ωw decomposes as

ωw = w3 × ẇ3︸ ︷︷ ︸
ωw⊥

+ (w⊤
3 ωw)w3︸ ︷︷ ︸

ωw∥

, (D.4)

where ωw⊥ is the component orthogonal to w3, and ωw∥ is the component parallel
to w3.

The orthogonal component ωw⊥ = w3 × ẇ3 is directly computable. The parallel
component requires further development. Since w3 = w1 × w2,

w⊤
3 ωw = (w1 × w2)⊤ωw = w⊤

2 (ωw × w1) = w⊤
2 ẇ1.

Expanding ẇ1 and simplifying using orthogonality,

w⊤
2 ẇ1 = w⊤

2 (ẇ2 × w3)

= 1
∥w3 × r̂1∥

w⊤
2

(
(I3 − w2w⊤

2 )(ẇ3 × r̂1)
)

× w3

= 1
∥w3 × r̂1∥

(
w⊤

2 (ẇ3 × r̂1) × w3
)
.

Using the vector triple product,

w⊤
2 ẇ1 = 1

∥w3 × r̂1∥

(
(ẇ⊤

3 w3)(r̂⊤
1 w2) − (r̂⊤

1 w3)(ẇ⊤
3 w2)

)
.
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Since r̂⊤
1 w2 = 0,

w⊤
2 ẇ1 = −(r̂⊤

1 w3)(ẇ⊤
3 w2)

∥w3 × r̂1∥
= (r̂⊤

1 w3)(r̂⊤
1 (w3 × ẇ3))

∥w3 × r̂1∥2 .

Thus, the parallel component is

ωw∥ = (r̂⊤
1 w3)(r̂⊤

1 (w3 × ẇ3))
∥w3 × r̂1∥2 w3.

Combining both components, the desired angular velocity ωw is

ωw = w3 × ẇ3 + (r̂⊤
1 w3)(r̂⊤

1 (w3 × ẇ3))
∥w3 × r̂1∥2 w3

=
[
I3 + r̂⊤

1 w3
∥w3 × r̂1∥2 w3r̂⊤

1

]
(w3 × ẇ3) . (D.5)

Finally, substituting (D.5) into the expression for ωd gives:

ωd = R⊤
d

[
I3 + r̂⊤

1 w3
∥w3 × r̂1∥2 w3r̂⊤

1

]
(w3 × ẇ3) . (D.6)

Remark 5 (Time-varying Heading Direction). The expression for ωd in (D.6)
assumes a constant heading direction r̂1. If r̂1 varies with time, the desired angular
velocity becomes

ωd = R⊤
d

([
I3 + r̂⊤

1 w3
∥w3 × r̂1∥2 w3r̂⊤

1

]
(w3 × ẇ3) + ṙ⊤

1 (w3 × r̂1)w3

)
, (D.7)

where ṙ1 is the time derivative of the heading direction.

D.1 Bounding the Desired Angular Velocity
We now establish an upper bound for ωd as given in (D.6). By the sub-multiplicative
property of matrix norms,

∥ωd∥ =
∥∥∥∥∥R⊤

d

[
I3 + r̂⊤

1 w3
∥w3 × r̂1∥2 w3r̂⊤

1

]
(w3 × ẇ3)

∥∥∥∥∥
≤ ∥R⊤

d ∥
∥∥∥∥∥I3 + r̂⊤

1 w3
∥w3 × r̂1∥2 w3r̂⊤

1

∥∥∥∥∥ ∥w3 × ẇ3∥.

Since Rd is a rotation matrix, ∥R⊤
d ∥ = 1. Therefore,

∥ωd∥ ≤
∥∥∥∥∥I3 + r̂⊤

1 w3
∥w3 × r̂1∥2 w3r̂⊤

1

∥∥∥∥∥ ∥w3 × ẇ3∥.
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To bound the first term, observe that for any vectors a, b ∈ R3 with ∥a∥ = ∥b∥ = 1,
the matrix ab⊤ has operator norm 1. Thus,∥∥∥∥∥I3 + r̂⊤

1 w3
∥w3 × r̂1∥2 w3r̂⊤

1

∥∥∥∥∥
2

≤ ∥I3∥2 +
∣∣∣∣∣ r̂⊤

1 w3
∥w3 × r̂1∥2

∣∣∣∣∣ ∥w3r̂⊤
1 ∥2

= 1 + |r̂⊤
1 w3|

∥w3 × r̂1∥2 .

To ensure the denominator is bounded away from zero, assume r̂1 is never parallel
to w3, i.e., |r̂⊤

1 w3| ≤ δ < 1 for all t ≥ 0. Since

∥w3 × r̂1∥2 = 1 − (r̂⊤
1 w3)2 ≥ 1 − δ2,

we obtain the uniform bound∥∥∥∥∥I3 + r̂⊤
1 w3

∥w3 × r̂1∥2 w3r̂⊤
1

∥∥∥∥∥
2

≤ 1 + δ

1 − δ2 . (D.8)

Combining this with the previous inequality, we have

∥ωd∥ ≤
(

1 + δ

1 − δ2

)
∥w3 × ẇ3∥.

To bound ∥w3 × ẇ3∥, we use the fact that ∥w3∥ = 1 and the norm of the cross
product:

∥w3 × ẇ3∥ = ∥w3∥∥ẇ3∥ sin(θ) ≤ ∥ẇ3∥ = ∥ ˙̂
fr∥.

Thus, we obtain the final bound:

∥ωd∥ ≤
(

1 + δ

1 − δ2

)
∥ ˙̂
fr∥. (D.9)

This shows that the desired angular velocity ωd is bounded by a constant factor
times the rate of change of the reference force direction f̂r.

The bound in (D.9) can be sharpened by explicitly relating ˙̂
fr to the system

dynamics. Recall that for any differentiable vector fr ̸= 0,

˙̂
fr = 1

∥fr∥

(
I3 − f̂rf̂

⊤
r

)
ḟr, (D.10)

where fr is the reference control force defined in (5.4). This yields

∥ ˙̂
fr∥ ≤ ∥ḟr∥

∥fr∥
.

Assuming ∥fr∥ ≥ fmin
r := mg > 0 for all t, we have

∥ ˙̂
fr∥ ≤ ∥ḟr∥

mg
.
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Since

ḟr = −Kpėp − Kvv̇,

and

v̇ = 1
m

(
−Kpep − Kvv + X + P ⊥

⋆ RF1F †
2 τr

)
,

we get

ḟr = 1
m

KvKpep +
( 1
m

K2
v − Kp

)
v − 1

m
KvX − 1

m
KvP

⊥
⋆ RF1F †

2 τr.

Therefore, we can bound ∥ḟr∥ as follows:

∥ḟr∥ ≤ kvkp
m

∥ep∥ +
∣∣k2
v

m
− kp

∣∣∥v∥ + kv
m

∥X∥ + kv
m
γ∥τr∥.

Substituting into the previous bound, the desired angular velocity satisfies

∥ωd∥ ≤
(

1 + δ

1 − δ2

) 1
mg

(
kvkp
m

∥ep∥ +
∣∣k2
v

m
− kp

∣∣∥v∥ + kv
m

∥X∥ + kv
m
γ∥τr∥

)
.

(D.11)

This expression makes explicit how the bound on ∥ωd∥ depends on the system’s
tracking error dynamics and control gains.
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Appendix E

Positive Definiteness Conditions

This appendix presents a rigorous derivation of the conditions required for the
positive definiteness of the matrices involved in the stability analysis, as well as the
admissible bounds for the parameters c1 and c2.

E.1 Positive Definiteness Conditions for Translational
Dynamics

We first establish the conditions under which the matrices M11, M12, and W1 are
positive definite. These conditions are derived by applying the Sylvester criterion to
2 × 2 matrices and are summarized as follows:

• Matrices M11 and M12: Positive definiteness is ensured if and only if

kp > 0 and c1 <
√
mkp, (E.1)

where kp denotes the translational proportional gain and m is the mass.

• Matrix W1: Positive definiteness is guaranteed if and only if

c1 < kv(1 − emax
R ), c1 <

4kpkvm(emax
R − 1)2

k2
v(emax

R + 1)2 + 4kpm(1 − emax
R ) , (E.2)

where kv is the translational derivative gain and emax
R is the maximum attitude

error.

By consolidating the requirements in (E.1) and (E.2), the admissible range for
the parameter c1 is given by

c1 < min
{√

mkp, kv(1 − emax
R ), 4kpkvm(emax

R − 1)2

k2
v(emax

R + 1)2 + 4kpm(1 − emax
R )

}
.

This condition ensures the positive definiteness of all relevant matrices, thereby
guaranteeing the stability properties required for the subsequent analysis.
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E.2 Positive Definiteness Conditions for Attitude Dy-
namics

Similarly, we derive the conditions for the positive definiteness of the matrices M21,
M22, and W2 using the Sylvester criterion. The admissible bounds for the parameter
c2 are summarized below:

• Matrix M21: Positive definiteness is achieved if and only if

kR > 0 and c2 <
√
λmin(J) kR, (E.3)

where kR is the attitude proportional gain and λmin(J) denotes the minimum
eigenvalue of the inertia matrix J .

• Matrix M22: Positive definiteness holds if and only if

kR > 0 and c2 <

√
λmax(J)kR

2
2 − ψ

, (E.4)

where λmax is the maximum eigenvalue of J and ψ is a parameter related to
the attitude error.

• Matrix W2: Positive definiteness is ensured if and only if

c2 > kv λmax(J)α (mg + kRγ) ,

c2 <
kω

1 + kv γ α (β + kω) ,

det(W2) > 0,

(E.5)

where kω is the derivative gain for the attitude dynamics, α, β, and γ are
auxiliary parameters expressed in (6.38) and (6.26), and g is the gravitational
acceleration.

Before combining the conditions in (E.3), (E.4), and (E.5), we analyze the values
of c2 for which the determinant of W2 is positive. This leads to the following
second-order inequalities:

−Ac2
2 +B c2 − C > 0, (E.6)

where

A = 1
4
( kω
λmin(J) + kvγα(mg + kRγ)

)2
+ kR
λmax(J)

[
1 + kvγα(β + kω)

]
, (E.7)

B = kRkvα(mg + kRγ)
[
1 + kvγα(β + kω)

]
+ kRkω
λmax(J)

− 1
2
( kω
λmin(J) + kvγα(mg + kRγ)

)[
kRkvγα(β + kω)

]
, (E.8)

C = kRkvα
(

1
4kRkvγ

2α(β + kω)2 + kω(mg + kRγ)
)
. (E.9)
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Since A > 0, the parabola in (E.6) opens downward with respect to the variable c2.
Therefore, the condition for the determinant to be positive is satisfied if and only if
c2 lies strictly between the roots of the associated quadratic equation:

c2,− = B −
√

∆
2A , c2,+ = B +

√
∆

2A , ∆ = B2 − 4AC > 0.

If B > 0, then both c2,− and c2,+ are positive, and (E.6) holds if and only if

c2 ∈
(
c2,−, c2,+

)
. (E.10)

Remark 6. If ∆ ≤ 0, the quadratic polynomial in (E.6) is nonpositive for all c2, and
thus the matrix W2 cannot be positive definite for the given parameters. Furthermore,
even if ∆ > 0, it is necessary that B > 0 to ensure that both roots c2,− and c2,+ are
positive, which is a prerequisite for the existence of a positive admissible interval for
c2. Therefore, both conditions must be verified to guarantee the positive definiteness
of W2.

Put together (E.3), (E.5) and (E.10), the conditions for the positive definiteness
of the matrices M21, M22, and W2 can be summarized as follows:

c2 <min
{√

λmin(J) kR,
kω

1 + kvγα(β + kω) , c2,+

}
,

c2 >max
{
kvλmax(J)α

(
mg + kRγ

)
, c2,−

}
,

where we have noticed that
√
λmin(J) kR is always strictly less than

√
λmax(J)kR 2

2−ψ
for any admissible value of kR.
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